Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (6): 749-752    DOI: 0.3724/SP.J.1037.2011.00648
论文 Current Issue | Archive | Adv Search |
EFFECT OF LOW-TEMPERATURE VACUUM ANNEALING ON THE MAGNETIC PULSED AMORPHOUS Fe52Co34Hf7B6Cu1 ALLOY
CHAO Yuesheng, WANG Li, ZHANG Yanhui, ZHU Hanxian, LUO Liping
College of Sciences, Northeastern University, Shenyang 110819
Cite this article: 

CHAO Yuesheng, WANG Li, ZHANG Yanhui, ZHU Hanxian, LUO Liping. EFFECT OF LOW-TEMPERATURE VACUUM ANNEALING ON THE MAGNETIC PULSED AMORPHOUS Fe52Co34Hf7B6Cu1 ALLOY. Acta Metall Sin, 2012, 48(6): 749-752.

Download:  PDF(702KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The nanocrystalline Fe52Co34Hf7B6Cu1 soft magnatic alloys composed of bcc-Fe nanocrystals embedded in a residual amorphous matrix were obtained by the magneto-crystallization of melt-spun ribbons. In order to improve the soft magnetic properties of double--phase Fe(Co)--based nanocrystalline alloy, the nanocrystalline alloy specimens were vacuum annealed for 30 min at 100, 200 and 300 ℃. The results showed that the treatment of magnetic pulsing on the amorphous alloy resulted in the nanocrystallization, the grain size of precipitated α-Fe(Co) nanocrystallized phase was 5-10 nm. The low-temperature vacuum annealing of magnetic pulsed specimens further improved the soft magnetic properties of nanocrystalline alloy. The influence of annealing at 100 ℃ for 30 min on the properties is most obvious.
Key words:  amorphous alloy      magnetic pulsing      two-phases nanocrystalline alloy      low-temperature vacuum annealing      magnetic property     
Received:  21 October 2011     
ZTFLH: 

T383

 
About author:  晁月盛, 男, 1946年生, 教授

URL: 

https://www.ams.org.cn/EN/0.3724/SP.J.1037.2011.00648     OR     https://www.ams.org.cn/EN/Y2012/V48/I6/749

[1] Kowalczyk M, Ferenc J, Liang X B, Kulik T.  J Magn Magn Mater,2006; 04: e651

[2] Liang X B, Ferenc J, Kulik T, Xu B S.  Mater Sci Eng,2006; A426: 169

[3] Liang X B, Kulik T, Ferenc J, Kowalczyk M, Vlasak G, Sun W S,Xu B S.  Physica, 2005; 370B: 151

[4] Kulik T, Liang X B, Ferenc J, Xu B S.  Surf Eng China, 2004; 68: 1

    (Kulik T, 梁秀兵,  Ferenc J, 徐滨士. 中国表面工程, 2004; 68: 1)

[5] Blazquez J S, Franco V, Conde C F, Conde A, Ferenc J, Kulik T. J Non--Cryst Solids, 2007; 353: 872

[6] Xiao S H, Chao Y S, Zhou B L.  Acta Phys Sin, 2000; 49: 288

    (肖素红, 晁月盛, 周本濂, 物理学报, 2000; 49: 288)

[7] Chao Y S, Li M Y, Geng Y, Liu J G.  Acta Phys Sin, 2004; 53: 3453

    (晁月盛, 李明扬, 耿岩, 刘吉刚. 物理学报2004; 53: 3453)

[8] Chao Y S, Zhang Y H, Guo H, Zhang L, Wang X G.  Acta Metall Sin,2007; 43: 231

    (晁月盛, 张艳辉, 郭红, 张莉, 王兴刚. 金属学报, 2007; 43: 231)

[9] Chao Y S, Zhu H X, Li Z M.  J Phys, 2009; 188: 012038

[10] Kopcewicz M, Gonser U, Wagner H G.  Appl Phys, 1980; 23: 1

[11] Kopcewicz M, Wagner H G, Gonser U.  J Magn Magn Mater,1983; 40: 139

[12] Majumdar B, Bysak S, Akhtar D.  J Magn Magn Mater, 2007; 309: 300

[13] Chao Y S, Guo H, Gao X Y, Luo L P, Zhu H X.  Acta Phys Sin,2011; 60: 017504

     (晁月盛, 郭红, 高翔宇, 罗丽平, 朱涵娴. 物理学报, 2011; 60: 017504)

[14] Sato K, Murakami H, Kobayashi Y, Sprengel W, Schaefer H E. J Non-Cryst Solids, 2007; 353: 1882

[15] Tian S.  Physical Properties of Materials. Beijing: Aviation and Aerospace University Press, 2000: 265

     (田莳. 材料物理性能. 北京: 北京航空航天大学出社, 2000: 265)
[1] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[2] LIU Shuaishuai, HOU Chaonan, WANG Engang, JIA Peng. Plastic Rheological Behaviors of Zr61Cu25Al12Ti2 and Zr52.5Cu17.9Ni14.6Al10Ti5 Amorphous Alloys in the Supercooled Liquid Region[J]. 金属学报, 2022, 58(6): 807-815.
[3] LI Jinfu, LI Wei. Structure and Glass-Forming Ability of Al-Based Amorphous Alloys[J]. 金属学报, 2022, 58(4): 457-472.
[4] ZHANG Jinyong, ZHAO Congcong, WU Yijin, CHEN Changjiu, CHEN Zheng, SHEN Baolong. Structural Characteristic and Crystallization Behavior of the (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x High-Entropy-Amorphous Alloy Ribbons[J]. 金属学报, 2022, 58(2): 215-224.
[5] HAN Luhui, KE Haibo, ZHANG Pei, SANG Ge, HUANG Huogen. Kinetic Crystallization Behavior of Amorphous U60Fe27.5Al12.5 Alloy[J]. 金属学报, 2022, 58(10): 1316-1324.
[6] XIANG Zhaolong, ZHANG Lin, XIN Yan, AN Bailing, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, WANG Engang. Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy[J]. 金属学报, 2022, 58(1): 103-113.
[7] LIU Riping, MA Mingzhen, ZHANG Xinyu. New Development of Research on Casting of Bulk Amorphous Alloys[J]. 金属学报, 2021, 57(4): 515-528.
[8] HU Xiang, GE Jiacheng, LIU Sinan, FU Shu, WU Zhenduo, FENG Tao, LIU Dong, WANG Xunli, LAN Si. Combustion Mechanism of Fe-Nb-B-Y Amorphous Alloys with an Anomalous Exothermic Phenomenon[J]. 金属学报, 2021, 57(4): 542-552.
[9] ZHU Min, OUYANG Liuzhang. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. 金属学报, 2021, 57(11): 1416-1428.
[10] HUANG Huogen, ZHANG Pengguo, ZHANG Pei, WANG Qinguo. Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems[J]. 金属学报, 2020, 56(6): 849-854.
[11] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[12] GENG Yaoxiang, WANG Yingmin. Local Structure-Property Correlation of Fe-Based Amorphous Alloys: Based on Minor Alloying Research[J]. 金属学报, 2020, 56(11): 1558-1568.
[13] XU Xiuyue, LI Yanhui, ZHANG Wei. Fabrication of Nanoporous PtRuFe by Dealloying Amorphous Fe(Pt, Ru)B Ribbons and Their Methanol Electrocatalytic Properties[J]. 金属学报, 2020, 56(10): 1393-1400.
[14] Jing BAI, Shaofeng SHI, Jinlong WANG, Shuai WANG, Xiang ZHAO. First-Principles Calculations of Phase Stability and Magnetic Properties of Ni-Mn-Ga-Ti FerromagneticShape Memory Alloys[J]. 金属学报, 2019, 55(3): 369-375.
[15] JIN Chenri, YANG Suyuan, DENG Xueyuan, WANG Yangwei, CHENG Xingwang. Effect of Nano-Crystallization on Dynamic Compressive Property of Zr-Based Amorphous Alloy[J]. 金属学报, 2019, 55(12): 1561-1568.
No Suggested Reading articles found!