Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (11): 1464-1469    DOI: 10.3724/SP.J.1037.2011.00346
论文 Current Issue | Archive | Adv Search |
SOLIDIFICATION MECHANISM OF TERNARY QUASIPERITECTIC ALLOY OF Al-11.8Cu-24.22Mg
YAN Erhu1), LI Xinzhong1), XU Daming1), ZHAO Guangwei1), ZHOU Jianxin2), GUO Jingjie1), FU Hengzhi1)
1) School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001
2) State Key Lab of Mold & Die Technology, Huazhong University of Science and Technology, Wuhan 430074
Cite this article: 

YAN Erhu LI Xinzhong XU Daming ZHAO Guangwei ZHOU Jianxin GUO Jingjie FU Hengzhi. SOLIDIFICATION MECHANISM OF TERNARY QUASIPERITECTIC ALLOY OF Al-11.8Cu-24.22Mg. Acta Metall Sin, 2011, 47(11): 1464-1469.

Download:  PDF(2619KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In the field of condensed matter physics and materials science, it is of great importance to investigate the microstructures, properties and solidification regularities of liquid metals. In the last few decades, the theories of solidification of binary alloys, such as dendritic growth and eutectic growths have been built. Great progress has also been made on the study of monetectic and peritectic alloys. But a solidification theory on ternary quasiperitectic alloys has not been established up to now. The study of the solidification process of quasiperitectic alloys will provide a basic work for solidification theories of ternary alloys.
The master alloy of Al-11.8Cu-24.22Mg was prepared from pure Al (99.99%), pure Mg (99.99%) and Al-54.2Cu in a resistance furnace under CO2 and SF6 (volume proportion is 40∶1) atmosphere. The melted alloy (840-850℃) was pouring into different quenching graphite crucibles at the same time, and the cooling curves were recorded by a sixteen channels temperature recorder. The graphite crucible was quenched into cold--water immediately for rapid cooling at the preplanned quenching temperature. After the experiment, the microstructures of the sample were analyzed by SEM, with EDS analysis.
The experiment result indicates that the primary phase is identified as S (Al2CuMg) and the quasiperitectic phases are α-Al and T (Al6CuMg4). The solidification microstructure is composed of remnant primary phase, quasiperitectic phases, binary eutectic and ternary eutectic. Although the quasiperitectic phases and binary eutectic are composed of the same phases (α-Al+T(Al6CuMg4)), their structures are different. The former structure presents strip form and the later present dendritic form. The ternary eutectic reaction is suppressed and the remnant primary S phase is reserved in the matrix with non-equilibrating crystallization.
Key words:  ternary quasiperitectic      quenching techniques      microstructure evolution      solidification mechanism     
Received:  02 June 2011     
ZTFLH: 

TG249.9

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.51071062 and 50801019), Open Project of State Key Lab of Mold $\&$ Die Technology of Huazhong University of Science and Technology (No.2011-P03) and National Basic Research Program of China (No.2011CB610406)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00346     OR     https://www.ams.org.cn/EN/Y2011/V47/I11/1464

[1] Li L, Lu X Y, Dai F P. Foundry Technol, 2008; 29: 601

(李丽, 鲁晓宇, 代富平. 铸造技术, 2008; 29: 601)

[2] Lipton J, Kurz W, Trivedi R. Acta Metall, 1987; 35: 957

[3] Trivedi R, Lipton J, Kurz W. Acta Metall, 1987; 35: 965

[4] Jackson K, Hunt J. Trans AIME, 1966; 236: 1129

[5] Kurz W, Fisher D J. Acta Metall, 1980; 28: 777

[6] Trivedi R, Magnin P, Kurz W. Acta Metall, 1987; 35: 971

[7] Hillig W B, Mccarroll B. J Chem Phys, 1966; 45: 3887

[8] Wang N, Wei B. Mater Sci Eng, 2003; A345: 145

[9] Kerr H W, Kurz W. Int Mater Rev, 1996; 41: 129

[10] Boettinger W J, Coriell S R, Greer A L, Karma A, Kurz W, Rappaz M, Trivedi R. Acta Mater, 2000; 48: 43

[11] Asta M, Beckermann C, Karma A, Kurz W, Napolitano R, Plapp M, Purdy G, Rappaz M, Trivedi R. Acta Mater, 2009; 57(4): 941

[12] Sha G, Reilly K A Q O, Cantor B, Tichmarsh J M, Hamerton R G. Acta Mater, 2003; 51: 1883

[13] Raghavan V. JPEDAV, 2007; 28: 174

[14] Chen Z M. J Shandong Inst Technol, 2001; 15(3): 25

(陈宗明. 山东工程学院学报, 2001; 15(3): 25)

[15] Li L, Lu X Y, Cao C D, Dai F P. Chin Sci Bull, 2009; 54: 2108

(李丽, 鲁晓宇, 曹崇德, 代富平. 科学通报, 2009; 54: 2108)

[16] Fan L, Lu X Y, Dai F P. Foundry, 2010; 59: 775

(范龙, 鲁晓宇, 代富平. 铸造, 2010; 59: 775)

[17] Lewis D J. PhD Thesis, Bethlehem: Lehigh University, 2000: 1

[18] Snugovsky L, Snugovsky P, Perovic D D. Mater Sci Technol, 2008; 24: 245

[19] Ruan Y, Wei B. Sci China, 2007; 50G: 563

[20] Li J G, Mao X M, Fu H Z, Shi Z X. Mater Sci Prog, 1991; 5: 461

(李建国, 毛协民, 傅恒志, 史正兴. 材料科学进展, 1991; 5: 461)

[21] Zhou G, Wang W H, Li Y Y. Acta Metall Sin, 2000; 36: 478

(周刚, 王文皓, 李依依. 金属学报, 2000; 36: 478)

[22] Xu H S. Aerospace Mater Technol, 1997; 6: 41

(徐禾水. 宇航材料工艺, 1997; 6: 41)

[23] Yan X Y. PhD Thesis, Madison: University of Wisconsin–Madison, 2001
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[4] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[5] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[6] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[7] MA Minjing, QU Yinhu, WANG Zhe, WANG Jun, DU Dan. Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials[J]. 金属学报, 2022, 58(10): 1305-1315.
[8] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
[9] LIU Chao, YAO Zhihao, GUO Jing, PENG Zichao, JIANG He, DONG Jianxin. Microstructure Evolution Behavior of Powder Superalloy FGH4720Li at Near Service Temperature[J]. 金属学报, 2021, 57(12): 1549-1558.
[10] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[11] WU Yun, LIU Yahui, KANG Maodong, GAO Haiyan, WANG Jun, SUN Baode. Microstructure Evolution of K4169 Alloy During Cyclic Loading[J]. 金属学报, 2020, 56(9): 1185-1194.
[12] WANG Tao,WAN Zhipeng,LI Zhao,LI Peihuan,LI Xinxu,WEI Kang,ZHANG Yong. Effect of Heat Treatment Parameters on Microstructure and Hot Workability of As-Cast Fine Grain Ingot of GH4720Li Alloy[J]. 金属学报, 2020, 56(2): 182-192.
[13] JIANG He,DONG Jianxin,ZHANG Maicang,YAO Zhihao,YANG Jing. Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition[J]. 金属学报, 2019, 55(9): 1211-1220.
[14] Yingjun GAO, Yujiang LU, Lingyi KONG, Qianqian DENG, Lilin HUANG, Zhirong LUO. Phase Field Crystal Model and Its Application for Microstructure Evolution of Materials[J]. 金属学报, 2018, 54(2): 278-292.
[15] Zongyi MA, Qiao SHANG, Dingrui NI, Bolv XIAO. Friction Stir Welding of Magnesium Alloys: A Review[J]. 金属学报, 2018, 54(11): 1597-1617.
No Suggested Reading articles found!