|
|
STUDY ON CORROSION OF MEDICAL Mg-Ca AND Mg-Li-Ca ALLOYS |
ZENG Rongchang1, 2, 3), GUO Xiaolong2), LIU Chenglong2), CUI Hongzhi1), TAO Wu2), LIU Yunyi2), LI Bowen2) |
1) College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590
2) School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400050
3) State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 |
|
Cite this article:
ZENG Rongchang GUO Xiaolong LIU Chenglong CUI Hongzhi TAO Wu LIU Yunyi LI Bowen. STUDY ON CORROSION OF MEDICAL Mg-Ca AND Mg-Li-Ca ALLOYS. Acta Metall Sin, 2011, 47(11): 1477-1482.
|
Abstract The corrosion behaviors of the extruded Mg-0.54Ca and Mg-1.33Li-0.6Ca alloys in simulated body fluids (SBFs) were investigated using weight loss, hydrogen evolution and pH value measurement as well as dynamic electrochemical technique. The microstructure and corrosion morphology of these alloys were discerned by means of OM and SEM, and their corrosion products were analyzed by XRD. The results show that the microstructure is composed of α-Mg matrix and secondary phases: Mg2Ca and CaLi2 for the Mg-1.33Li-0.6Ca alloy, while α-Mg and Mg2Ca for the Mg-0.54Ca alloy. At the initial immersion stage, the corrosion rate of the Mg-1.33Li-0.6Ca alloy is slightly faster than that of the Mg-0.54Ca alloy, whereas at the subsequent period the Mg-1.33Li-0.6Ca alloy has a corrosion resistance higher than the Mg-0.54Ca alloy. Lithium let to the formation of a dense corrosion product layer, which consists LiH, Mg(OH)2, MgCO3, CaCO3, CaMgCO3 and CaMgPO4 for the Mg-1.33Li-0.6Ca alloy, however, it consists of MgCO3, CaCO3 and CaMgPO4 for Mg-0.54Ca. Pitting and filiform corrosions are the main corrosion types of these alloys in SBFs.
|
Received: 23 May 2011
|
|
Fund: Supported by Natural Science Foundation of Shandong Province (No.ZR2011EMM004), Taishan
Scholarship Project of Shandong Province and Undergraduate Innovational Experimentation Program of Chongqing University of Technology |
[1] Zeng R C, Dietzel W, Witte F, Hort N. Adv Eng Mater, 2008; 10B: 3[2] Staiger M P, Pietak A M, Huadmai J, Dias G. Biomaterials, 2006; 27: 1728[3] Song G L. Corros Sci, 2007; 49: 1696[4] Witte F, Kaese V, Haferkamp H, Switzer E, Meyer–Lindenberg A, Wirth C J, Windhagen H. Biomaterials, 2005; 26: 3557[5] Hong Y S, Yang K, Zhang G D, Huang J J, Hao Y Q, Ai H J. Acta Metall Sin, 2008; 44: 1035(洪岩松, 杨柯, 张广道, 黄晶晶, 郝玉全, 艾红军. 金属学报, 2008; 44: 1035)[6] Zeng R C, Kong L H, Chen J, Cuo H Z, Liu C L. Chin J Nonferrous Met, 2011; 21: 35(曾荣昌, 孔令鸿, 陈君, 崔洪芝, 刘成龙. 中国有色金属学报, 2011; 21: 35)[7] Zhang J, Zong Y, Fu P H, Yuan G Y, Ding W J. J Clin Rehabil Tissue Eng Res, 2009; 13: 574(张佳, 宗阳, 付彭怀, 袁广银, 丁文江. 中国组织工程研究与临床康复, 2009; 13: 5747)[8] Zhang C Y, Gao J C, Zeng R C, Liu C L, Wu X, Wu D. J Chin Ceram Soc, 2010; 38: 885(张春艳, 高家诚, 曾荣昌, 刘成龙, 吴 霞, 吴迪. 硅酸盐学报, 2010; 38: 885)[9] Zhang C Y, Zeng R C, Liu C L, Gao J C. Surf Coat Technol, 2010; 204: 3636[10] Zhang C Y, Zeng R C, Chen J, Yang H, Tian Z Q. Rare Met Mater Eng, 2009; 38: 1363(张春艳, 曾荣昌, 陈君, 杨 惠, 田中青. 稀有金属材料与工程, 2009; 38: 1363)[11] Li Z, Gu X, Lou S, Zheng Y. Biomaterials, 2008; 29: 1329[12] Zberg B, Uggowitzer P J, Loeffler J F. Nature Mater, 2009; 8: 887[13] Ma E, Xu J. Nature Mater, 2009; 8: 855[14] Li J, Song Y, Zhang S, Zhao C, Zhang F, Zhang X, Cao L, Fan Q, Tang T. Biomaterials, 2010; 31: 5782[15] Zheng Y F, Liu B, Gu X N. Mater Rev, 2009; 7: 187(郑玉峰, 刘 彬, 顾雪楠. 材料导报, 2009; 7: 187)[16] Liu C L, Wang Y J, Zeng R C, Zhang X M, Huang W J, Chu P K. Corros Sci, 2010; 52: 3341[17] Bobby K M, Singh R R K. Biomaterials, 2008; 29: 2306[18] Zhang C Y, Zeng R C, Liu C I, Chen R S, Gao J C. Trans Nonferrous Met Soc China, 2010; 20(suppl): s655[19] Witte F, Fischer J, Nellesen J, Vogt C, Vogt J, Donath T, Beckmann F. Acta Biomater, 2010; 6: 1792[20] Leeflang M A, Zhou J, Duszczyk J. In: Kainer K U ed., Proceeding of 8th Int Conf Magnesium Alloys and Their Applications, Weinheim: Wiley, 2009: 1182[21] Zhang M L, Elkin F M. Magnesium–Lithium Superlight Alloys. Beijing: Science Press, 2010: 304(张密林, Elkin F M. 镁锂超轻合金. 北京: 科学出版社, 2010: 304)[22] Matucha K H, translated by Ding D Y. Structure and Properties of Nonferrous Alloys. Beijing: Science Press, 1999: 120(马图哈 K H, 丁道云 译. 非铁合金的结构与性能. 北京: 科学出版社, 1999: 120)[23] Sivashanmugam A, Kumar T P, Renganathan N G, Gopukumar S. J Appl Electrochem, 2004; 34: 1135[24] Lin M C, Tsai C Y, Uan J Y. Corros Sci, 2009; 51: 2463[25] Huang X M, Zhang C H, Zhang M L. J Aeronaut Mater, 2008; 28: 71(黄晓梅, 张春红, 张密林. 航空材料学报, 2008; 28: 71)[26] Zeng R C, Kong L H, Xu S, Zhang C Y, Wang M. J Chongqing Univ Technol, 2010; 24: 34(曾荣昌, 孔令鸿, 许苏, 张春艳, 王猛. 重庆理工大学学报, 2010; 24: 34)[27] Shi Z M, Liu M, Atrens A. Corros Sci, 2010; 52: 579[28] Grobner J, Schmid–Fetzer R, Pisch A, Colinet C, Pavlyuk V V, Dmytriv G S, Kevorkov D G, Bodak O I. Thermochim Acta, 2002; 389: 85[29] Li Z J, Gu X N, Lou S Q, Zheng Y F. Biomaterials, 2008; 29: 1329[30] Zeng R C, Chen J. Trans Nonferrous Met Soc China, 2007; 17(suppl): s193[31] Song Y W, Shan D Y, Chen R S, Han E H. Corros Sci, 2009; 51: 1087[32] Urquidi–Macdonald M, Macdonald D D, Pensado O, Flores J R. Electrochim Acta, 2001; 47: 833[33] Song Y W, Shan D Y, Chen R S, Zhang F, Han E H. Mater Sci Eng, 2009; C29: 1039 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|