Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (11): 1477-1482    DOI: 10.3724/SP.J.1037.2011.00325
论文 Current Issue | Archive | Adv Search |
STUDY ON CORROSION OF MEDICAL Mg-Ca AND Mg-Li-Ca ALLOYS
ZENG Rongchang1, 2, 3), GUO Xiaolong2), LIU Chenglong2), CUI Hongzhi1), TAO Wu2), LIU Yunyi2), LI Bowen2)
1) College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590
2) School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400050
3) State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

ZENG Rongchang GUO Xiaolong LIU Chenglong CUI Hongzhi TAO Wu LIU Yunyi LI Bowen. STUDY ON CORROSION OF MEDICAL Mg-Ca AND Mg-Li-Ca ALLOYS. Acta Metall Sin, 2011, 47(11): 1477-1482.

Download:  PDF(1664KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The corrosion behaviors of the extruded Mg-0.54Ca and Mg-1.33Li-0.6Ca alloys in simulated body fluids (SBFs) were investigated using weight loss, hydrogen evolution and pH value measurement as well as dynamic electrochemical technique. The microstructure and corrosion morphology of these alloys were discerned by means of OM and SEM, and their corrosion products were analyzed by XRD. The results show that the microstructure is composed of α-Mg matrix and secondary phases: Mg2Ca and CaLi2 for the Mg-1.33Li-0.6Ca alloy, while α-Mg and Mg2Ca for the Mg-0.54Ca alloy. At the initial immersion stage, the corrosion rate of the Mg-1.33Li-0.6Ca alloy is slightly faster than that of the Mg-0.54Ca alloy, whereas at the subsequent period the Mg-1.33Li-0.6Ca alloy has a corrosion resistance higher than the Mg-0.54Ca alloy. Lithium let to the formation of a dense corrosion product layer, which consists LiH, Mg(OH)2, MgCO3, CaCO3, CaMgCO3 and CaMgPO4 for the Mg-1.33Li-0.6Ca alloy, however, it consists of MgCO3, CaCO3 and CaMgPO4 for Mg-0.54Ca. Pitting and filiform corrosions are the main corrosion types of these alloys in SBFs.
Key words:  magnesium-lithium-calcium alloy      biomaterial      corrosion      simulated body fluid      polarization     
Received:  23 May 2011     
ZTFLH: 

TG174.46

 
Fund: 

Supported by Natural Science Foundation of Shandong Province (No.ZR2011EMM004), Taishan
Scholarship Project of Shandong Province and Undergraduate Innovational Experimentation Program of Chongqing University of Technology

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00325     OR     https://www.ams.org.cn/EN/Y2011/V47/I11/1477

[1] Zeng R C, Dietzel W, Witte F, Hort N. Adv Eng Mater, 2008; 10B: 3

[2] Staiger M P, Pietak A M, Huadmai J, Dias G. Biomaterials, 2006; 27: 1728

[3] Song G L. Corros Sci, 2007; 49: 1696

[4] Witte F, Kaese V, Haferkamp H, Switzer E, Meyer–Lindenberg A, Wirth C J, Windhagen H. Biomaterials, 2005; 26: 3557

[5] Hong Y S, Yang K, Zhang G D, Huang J J, Hao Y Q, Ai H J. Acta Metall Sin, 2008; 44: 1035

(洪岩松, 杨柯, 张广道, 黄晶晶, 郝玉全, 艾红军. 金属学报, 2008; 44: 1035)

[6] Zeng R C, Kong L H, Chen J, Cuo H Z, Liu C L. Chin J Nonferrous Met, 2011; 21: 35

(曾荣昌, 孔令鸿, 陈君, 崔洪芝, 刘成龙. 中国有色金属学报, 2011; 21: 35)

[7] Zhang J, Zong Y, Fu P H, Yuan G Y, Ding W J. J Clin Rehabil Tissue Eng Res, 2009; 13: 574

(张佳, 宗阳, 付彭怀, 袁广银, 丁文江. 中国组织工程研究与临床康复, 2009; 13: 5747)

[8] Zhang C Y, Gao J C, Zeng R C, Liu C L, Wu X, Wu D. J Chin Ceram Soc, 2010; 38: 885

(张春艳, 高家诚, 曾荣昌, 刘成龙, 吴 霞, 吴迪. 硅酸盐学报, 2010; 38: 885)

[9] Zhang C Y, Zeng R C, Liu C L, Gao J C. Surf Coat Technol, 2010; 204: 3636

[10] Zhang C Y, Zeng R C, Chen J, Yang H, Tian Z Q. Rare Met Mater Eng, 2009; 38: 1363

(张春艳, 曾荣昌, 陈君, 杨 惠, 田中青. 稀有金属材料与工程, 2009; 38: 1363)

[11] Li Z, Gu X, Lou S, Zheng Y. Biomaterials, 2008; 29: 1329

[12] Zberg B, Uggowitzer P J, Loeffler J F. Nature Mater, 2009; 8: 887

[13] Ma E, Xu J. Nature Mater, 2009; 8: 855

[14] Li J, Song Y, Zhang S, Zhao C, Zhang F, Zhang X, Cao L, Fan Q, Tang T. Biomaterials, 2010; 31: 5782

[15] Zheng Y F, Liu B, Gu X N. Mater Rev, 2009; 7: 187

(郑玉峰, 刘 彬, 顾雪楠. 材料导报, 2009; 7: 187)

[16] Liu C L, Wang Y J, Zeng R C, Zhang X M, Huang W J, Chu P K. Corros Sci, 2010; 52: 3341

[17] Bobby K M, Singh R R K. Biomaterials, 2008; 29: 2306

[18] Zhang C Y, Zeng R C, Liu C I, Chen R S, Gao J C. Trans Nonferrous Met Soc China, 2010; 20(suppl): s655

[19] Witte F, Fischer J, Nellesen J, Vogt C, Vogt J, Donath T, Beckmann F. Acta Biomater, 2010; 6: 1792

[20] Leeflang M A, Zhou J, Duszczyk J. In: Kainer K U ed., Proceeding of 8th Int Conf Magnesium Alloys and Their Applications, Weinheim: Wiley, 2009: 1182

[21] Zhang M L, Elkin F M. Magnesium–Lithium Superlight Alloys. Beijing: Science Press, 2010: 304

(张密林, Elkin F M. 镁锂超轻合金. 北京: 科学出版社, 2010: 304)

[22] Matucha K H, translated by Ding D Y. Structure and Properties of Nonferrous Alloys. Beijing: Science Press, 1999: 120

(马图哈 K H, 丁道云 译. 非铁合金的结构与性能. 北京: 科学出版社, 1999: 120)

[23] Sivashanmugam A, Kumar T P, Renganathan N G, Gopukumar S. J Appl Electrochem, 2004; 34: 1135

[24] Lin M C, Tsai C Y, Uan J Y. Corros Sci, 2009; 51: 2463

[25] Huang X M, Zhang C H, Zhang M L. J Aeronaut Mater, 2008; 28: 71

(黄晓梅, 张春红, 张密林. 航空材料学报, 2008; 28: 71)

[26] Zeng R C, Kong L H, Xu S, Zhang C Y, Wang M. J Chongqing Univ Technol, 2010; 24: 34

(曾荣昌, 孔令鸿, 许苏, 张春艳, 王猛. 重庆理工大学学报, 2010; 24: 34)

[27] Shi Z M, Liu M, Atrens A. Corros Sci, 2010; 52: 579

[28] Grobner J, Schmid–Fetzer R, Pisch A, Colinet C, Pavlyuk V V, Dmytriv G S, Kevorkov D G, Bodak O I. Thermochim Acta, 2002; 389: 85

[29] Li Z J, Gu X N, Lou S Q, Zheng Y F. Biomaterials, 2008; 29: 1329

[30] Zeng R C, Chen J. Trans Nonferrous Met Soc China, 2007; 17(suppl): s193

[31] Song Y W, Shan D Y, Chen R S, Han E H. Corros Sci, 2009; 51: 1087

[32] Urquidi–Macdonald M, Macdonald D D, Pensado O, Flores J R. Electrochim Acta, 2001; 47: 833

[33] Song Y W, Shan D Y, Chen R S, Zhang F, Han E H. Mater Sci Eng, 2009; C29: 1039
[1] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[2] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[3] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[4] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[5] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[6] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[7] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[8] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[9] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[10] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[11] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[12] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[13] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[14] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[15] SONG Jialiang, JIANG Zixue, YI Pan, CHEN Junhang, LI Zhaoliang, LUO Hong, DONG Chaofang, XIAO Kui. Corrosion Behavior and Product Evolution of Steel for High-Speed Railway Bogie G390NH in Simulated Marine and Industrial Atmospheric Environment[J]. 金属学报, 2023, 59(11): 1487-1498.
No Suggested Reading articles found!