Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (11): 1396-1402    DOI: 10.3724/SP.J.1037.2011.00293
论文 Current Issue | Archive | Adv Search |
SIMULATION OF MICROSTRUCTURE AND PROPERTIES EVOLUTION OF MICRO ALLOYED STEEL DURING HOT DEFORMATION BY CELLULAR AUTOMATON
ZHI Ying1), LIU Xianghua1), YU Hailiang2), WANG Zhenfan1)
1) State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
2) School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
Cite this article: 

ZHI Ying LIU Xianghua YU Hailiang WANG Zhenfan. SIMULATION OF MICROSTRUCTURE AND PROPERTIES EVOLUTION OF MICRO ALLOYED STEEL DURING HOT DEFORMATION BY CELLULAR AUTOMATON. Acta Metall Sin, 2011, 47(11): 1396-1402.

Download:  PDF(4084KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A model for prediction of the dynamic recrystallization microstructure and properties evolution of hot deformed austenite for micro alloyed steel by cellular automaton (CA) was developed. The theoretical modeling of dynamic recrystallization was on the basis of dislocation density, and the nucleation and grain growth of dynamic recrystallization were considered. The microstructure evolution of austenite dynamic recrystallization, such as the grain shape, grain size and volume fraction, was predicted quantitatively and visually described. Moreover the distribution and variation of the dislocation density and flow tress were obtained. Meanwhile, the microstructure and variation of the flow tress of micro alloyed< steel during hot deformation were measured by experiments. The measured results were in good agreement with the CA calculation results.
Key words:  cellular automaton      micro alloyed steel      dynamic recrystallization     
Received:  09 May 2011     
Fund: 

Supported by National Natural Science Foundation of China (Nos.51174249, 50974039 and 51034009),  National Basic Research Program of China (No.2011CB606306-2) and Specialized Research  Fund for the Doctoral Program of Higher Education (No.20090042120005)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00293     OR     https://www.ams.org.cn/EN/Y2011/V47/I11/1396

[1] Wang Y M, Li M Y, Wei G. Control Rolling and Control Cooling of Steel Plates. Beijing: Metallurgical Industry Press, 2007: 20

(王有铭, 李曼云, 韦光. 钢材的控制轧制和控制冷却. 北京: 冶金工业出版社, 2007: 20)

[2] Zhu L J, Wu D, Zhao X M. J Northeastern Univ, 2006; 27): 987

(朱丽娟, 吴迪, 赵宪明. 东北大学学报, 2006; 27: 987)

[3] Ghosh S, Gabane P, Bose A, Chakraborti N. Comp Mater Sci, 2009; 45: 96

[4] Yang B J, Hattiangadi A, Li W Z, Zhou G F, McGreevy T E. Mater Sci Eng, 2010; A527: 2978

[5] Zheng C W, Xiao N M, Hao L H, Li D Z, Li Y Y. Acta Mater, 2009; 57: 2956

[6] Hesselbarth H W, Gobe1 I R. Acta Metall, 1991; 39: 2135

[7] Davies C H J. Scr Mater, 1995; 33: 1139

[8] Zhen C W, Lan Y J, Xiao N M, Li D Z, Li Y Y. Acta Metall Sin, 2006; 42: 474

(郑成武, 兰勇军, 肖纳敏, 李殿中, 李依依. 金属学报, 2006; 42: 474)

[9] Liu X H. Acta Metall Sin, 2010; 46: 1025

(刘相华. 金属学报, 2010; 46: 1025)

[10] Zhan X H, Wei Y H, Dong Z B. J Mater Process Technol, 2008; 208: 1

[11] Yazdipour N, Davies C H J, Hodgson P D. Comput Mater Sci, 2008; 44: 566

[12] Chen F, Cui Z S, Liu J, Chen W, Chen S J. Mater Sci Eng, 2010; A527: 5539

[13] Bos C, Mecozzi M G, Sietsma J. Comput Mater Sci, 2010; 48: 692

[14] Li D Z, Xiao N M, Lan Y J, Zheng C W, Li Y Y. Acta Mater, 2007; 55: 6234

[15] Mao W M, Zhao X B. Recrystallization and Grain Growth of Metal. Beijing: Metallurgical Industry Press, 1994: 213

(毛卫民, 赵新兵. 金属的再结晶与晶粒长大. 北京: 冶金工业出版社, 1994: 213)

[16] Serajzadeh S, Taheri A K. Mater Des, 2002; 23: 271

[17] Cabrera J M, Omar A A, Jonas J J, Prado J M. Metall Mater Trans, 1997; 28A: 2233

[18] Serajzadeh S, Taheri A K. Mech Res Comum, 2003; 30: 87

[19] Zhu L J, Wu D, Zhao X M. J Iron Steel Res Int, 2007; 14(2): 61

[20] Zheng C W, Xiao N M, Li D Z, Li Y Y. Comput Mater Sci, 2008; 44: 507

[21] Mandal S, Sivaprasad P V, Venugopal S, Murthy K P N. Modell Simul Mater Sci Eng, 2006; 14: 1053

[22] Lu Y, Zhang L W, Deng X H, Pei J B, Wang S, Zhang G L. Acta Metall Sin, 2008; 44: 292

(卢瑜, 张立文, 邓小虎, 裴继斌, 王赛, 张国梁. 金属学报, 2008; 44: 292)

[23] Hallberg H, Wallin M, Ristinmaa M. Comput Mater Sci, 2010; 49: 25

[24] Guo H M, Liu X B, Yang X J. J Mater Eng, 2003; 8: 23

(郭洪民, 刘旭波, 杨湘杰. 材料工程, 2003; 8: 23)

[25] Li Z H. Master Dissertation. Shenyang: Northeastern University, 2004

(李治华. 东北大学硕士学位论文, 沈阳, 2004)

[26] Jin W Z, Wang L, Liu X H, Wang Z F. Mech Eng Mater, 2005; 29(10): 10

(金文忠, 王 磊, 刘相华, 王振范. 机械工程材料, 2005; 29(10): 10)
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[4] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[5] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[6] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[7] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[8] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[9] WU Huajian, CHENG Renshan, LI Jingren, XIE Dongsheng, SONG Kai, PAN Hucheng, QIN Gaowu. Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy[J]. 金属学报, 2020, 56(10): 1423-1432.
[10] ZHANG Yong, LI Xinxu, WEI Kang, WAN Zhipeng, JIA Chonglin, WANG Tao, LI Zhao, SUN Yu, LIANG Hongyan. Hot Deformation Characteristics of Novel Wrought Superalloy GH4975 Extruded Rod Used for 850 ℃ Turbine Disc[J]. 金属学报, 2020, 56(10): 1401-1410.
[11] Xu LI,Qingbo YANG,Xiangze FAN,Yonglin GUO,Lin LIN,Zhiqing ZHANG. Influence of Deformation Parameters on Dynamic Recrystallization of 2195 Al-Li Alloy[J]. 金属学报, 2019, 55(6): 709-719.
[12] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[13] Yahui DENG,Yinhui YANG,Jianchun CAO,Hao QIAN. Research on Dynamic Recrystallization Behavior of 23Cr-2.2Ni-6.3Mn-0.26N Low Nickel TypeDuplex Stainless Steel[J]. 金属学报, 2019, 55(4): 445-456.
[14] Xiting ZHONG, Lei WANG, Feng LIU. Study on Formation Mechanism of Necklace Structure in Discontinuous Dynamic Recrystallization of Incoloy 028[J]. 金属学报, 2018, 54(7): 969-980.
[15] Mingfang ZHU, Like XING, Hui FANG, Qingyu ZHANG, Qianyu TANG, Shiyan PAN. Progresses in Dendrite Coarsening During Solidification of Alloys[J]. 金属学报, 2018, 54(5): 789-800.
No Suggested Reading articles found!