Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (8): 1017-1021    DOI: 10.3724/SP.J.1037.2011.00155
论文 Current Issue | Archive | Adv Search |
SERRATED FLOW IN A FeNi–BASED AUSTENITIC ALLOY
ZHAO Shuai, LI Xiuyan, RONG Lijian
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

ZHAO Shuai LI Xiuyan RONG Lijian. SERRATED FLOW IN A FeNi–BASED AUSTENITIC ALLOY. Acta Metall Sin, 2011, 47(8): 1017-1021.

Download:  PDF(764KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Tensile tests on a FeNi–base austenitic alloy, with different amount of twin boundaries, were conducted at different temperatures and three strain rates, respectively. The results show that serrated flow occurs at temperatures from 300 to 700 ℃. This serrated flow exhibits bulge–like serrations at temperatures from 300 to 600 ℃ and stress–loss serrations at 700 ℃, which manifests the nature of thermal activation, i.e. higher temperatures boost serrations and higher strain rates depress them. Investigations on samples deformed at room temperature (no serrated flow) and 400 ℃ (prominent serrated flow) indicate that twin boundaries are strong enough to block slip deformation at 400 ℃. As a result, stress accumulates on twin boundaries and bulge–like serrations appear on the tensile curves. Effect of twin boundary amount on the morphologies of serrations testified this mechanism.
Key words:  serrated flow      FeNi–based alloy      twin boundary      dislocation      slip deformation     
Received:  23 March 2011     
ZTFLH: 

TG142.25

 
Fund: 

Supported by National Natural Science Foundation of China (No.50601028)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00155     OR     https://www.ams.org.cn/EN/Y2011/V47/I8/1017

[1] Le Chatelier A. Rev de Metall, 1909; 6: 914

[2] Zeides F, Roman I. Scr Metall, 1990; 24: 1919

[3] Zavattieri P D, Savic V, Hector Jr L G, Fekete J R, Tong W, Xuan Y. Int J Plast, 2009; 25: 2298

[4] Jiang H F, Zhang Q C, Yu Y H, Wu X P. Acta Metall Sin,2006; 42: 139

(江慧丰, 张青川, 徐毅豪, 伍小平. 金属学报, 2006; 42: 139)

[5] Fournier L, Savoie M, Delafosse D. J Nucl Mater, 2007; 366: 187

[6] Cottrell A H. Philos Mag, 1953; 44: 829

[7] Zhu S M, Nie J F. Scr Metall, 2004; 50: 51

[8] Prasad K, Varma V K. Mater Sci Eng, 2008; A486: 158

[9] Hale C L, Rollings W S, Weaver M L. Mater Sci Eng, 2001; A300: 153

[10] Shields J A, Goods S H, Gibala R, Mitchell T E. Mater Sci Eng, 1975; A20: 71

[11] Basinski Z S. Aust J Phys, 1960; 13: 354

[12] Onodera R, Era H, Ishibash T, Shimizu M. Acta Metall, 1983; 31: 1589

[13] Li X Y, Zhang J, Rong L J, Li Y Y. J Alloys Compd, 2009; 467: 383

[14] Michiuchi M, Kokawa H, Wang Z J, Sato Y S, Sakai K. Acta Metall, 2006; 54: 5179

[15] Mahajan S, Chin G Y. Acta Metall, 1973; 21: 173

[16] R´emy L. Acta Metall, 1977; 25: 711

[17] Jin Z H, Gumbsch P, Albe K, Ma E, Lu K, Gleiter H, Hahn H. Acta Mater, 2008; 56: 1126

[18] Qu S, Zhang P, Wu S D, Zang Q S, Zhang Z F. Scr Metall, 2008; 59: 1131

[19] R´emy L. Acta Metall, 1977; 25: 173

[20] Nembach E. Mater Sci Eng, 2006; A429: 277
[1] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[2] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[4] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[5] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[6] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[7] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[8] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[9] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[10] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[11] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[12] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[13] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
[14] Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU. Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism[J]. 金属学报, 2019, 55(4): 489-495.
[15] Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. 金属学报, 2019, 55(2): 223-228.
No Suggested Reading articles found!