Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (8): 990-996    DOI: 10.3724/SP.J.1037.2011.00041
论文 Current Issue | Archive | Adv Search |
STRUCTURE EVOLUTION OF AZ31 Mg ALLOY SHEET DURING BIDIRECTIONAL CYCLIC BENDING AT LOW TEMPERATURE AND SUBSEQUENT ANNEALING
ZHANG Lei 1,2, YANG Xuyue 1,2, HUO Qinghuan 1, TIAN Fang 1, ZHANG Yujing 1, ZHOU Xiaojie 1, CHEN Jia 1
1. School of Materials Science and Engineering, Central South University, Changsha 410083
2. Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083
Cite this article: 

ZHANG Lei YANG Xuyue HUO Qinghuan TIAN Fang ZHANG Yujing ZHOU Xiaojie CHEN Jia. STRUCTURE EVOLUTION OF AZ31 Mg ALLOY SHEET DURING BIDIRECTIONAL CYCLIC BENDING AT LOW TEMPERATURE AND SUBSEQUENT ANNEALING. Acta Metall Sin, 2011, 47(8): 990-996.

Download:  PDF(1007KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In this work, microstructure and texture evolution in the sheets of Mg alloy AZ31 was studied by means of bidirectional cyclic in–plane bending at 423 K followed by annealing at 523 K. The deformed and subsequent annealed microstructures were investigated by OM and SEM/EBSD examinations. The results showed that twinning is the dominant deformation mechanism. With the increase of deformation pass, more and more twins were produced in the grains near the surfaces of the sheets and finally these grains were serially divided up by twinning intersections. But only a few twins were formed in the grains of the middle of the sheets due to relatively lower strain. Finally, a gradient structure with high–density twins in the regions near the surfaces and, in contrast, lower density ones in the center of the sheets were induced. After 6 pass bending at 423 K followed by a subsequent annealing at 523 K, the average grain size near the surfaces was reduced to about 10 μm from the original size of 46 μm due to operation of static recrystallization at twin intersections and compression twins. Particularly, the relative intensity of the strong texture developed in the sheets was severely weakened by repeated bending, and this led to an increase of fracture elongation from 19.01% to about 24% with little change of tensile strength.
Key words:  magnesium alloy      bidirectional cyclic bending      twinning      annealing      texture     
Received:  17 January 2011     
ZTFLH: 

TG146.2

 
Fund: 

Supported by National Natural Science Foundation of China (No.51071182)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00041     OR     https://www.ams.org.cn/EN/Y2011/V47/I8/990

[1] Mordike B L, Ebert T. Mater Sci Eng, 2001; A302: 37

[2] Mackenzie L W F, Pekguleryuz M O. Scr Mater, 2008; 59: 665

[3] Jeong H T, Ha T K. J Mater Process Technol, 2007; 187–188: 559

[4] Barnett M R, Nave M D, Bettles C J. Mater Sci Eng, 2004; A386: 205

[5] Takamura H, Miyashita T, Kamegawa A, Okada M. J Alloys Compd, 2003; 356–357: 804

[6] P´erez–Prado M T, Del Valle J A, Ruano O A. Scr Mater, 2004; 50: 667

[7] Yang X Y, Zhang L, Jiang Y P, Zhu Y K. Chin J Nonferrous Met, 2011; 21: 269

(杨续跃, 张雷, 姜育培, 朱亚坤. 中国有色金属学报, 2011; 21: 269)

[8] Yang Q, Ghosh A K. Acta Mater, 2006; 54: 5147

[9] Huang G S, Song B, Xu W, Zhang L. Trans Nonferrous Met Soc China, 2010; 20: 1815

[10] Huang G S, Xu W, Huang G J, Li H C, Song B. J Mater Sci Technol, 2009; 25: 365

[11] Wang L N, Yang P, Xia W J, Chen Z H, Chen D, Li X, Meng L. Acta Metall Sin, 2009; 45: 58

(王丽娜, 杨平, 夏伟军, 陈振华, 陈鼎, 李萧, 孟利. 金属学报, 2009; 45: 58)

[12] Li X, Yang P, Meng L, Cui F E. Acta Metall Sin, 2010; 46: 147

(李萧, 杨平, 孟利, 崔凤娥. 金属学报, 2010; 46: 147)

[13] Li X, Yang P, Wang L N, Meng L, Cui F E. Mater Sci Eng, 2009; A517: 160

[14] Yang X Y, Sun Z Y, Zhang L. Acta Metall Sin, 2010, 46: 607

(杨续跃, 孙争艳, 张雷. 金属学报, 2010; 46: 607)

[15] Wang Y N, Huang J C. Acta Mater, 2007; 55: 897

[16] Liu Q. Acta Metall Sin, 2010; 46: 1458

(刘庆. 金属学报, 2010; 46: 1458)

[17] Yang X Y, Zhang L. Acta Metall Sin, 2009; 45: 1303

(杨续跃, 张雷. 金属学报, 2009; 45: 1303)

[18] Koike J, Sato Y, Ando D. Mater Trans, 2008; 49: 2792
[1] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[3] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[4] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[5] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[6] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[7] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[8] JIN Xinyan, CHU Shuangjie, PENG Jun, HU Guangkui. Effect of Dew Point on Selective Oxidation and Decarburization of 0.2%C-1.5%Si-2.5%Mn High Strength Steel Sheet During Continuous Annealing[J]. 金属学报, 2023, 59(10): 1324-1334.
[9] YU Shaoxia, WANG Qi, DENG Xiangtao, WANG Zhaodong. Preparation and Size Effect of GH3600 Nickel-Based Superalloy Ultra-Thin Strips[J]. 金属学报, 2023, 59(10): 1365-1375.
[10] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[11] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[12] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[13] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[14] YANG Ping, WANG Jinhua, MA Dandan, PANG Shufang, CUI Feng'e. Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing[J]. 金属学报, 2022, 58(10): 1261-1270.
[15] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
No Suggested Reading articles found!