Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (10): 1307-1314    DOI: 10.3724/SP.J.1037.2011.00151
论文 Current Issue | Archive | Adv Search |
COMPUTER SIMULATIONS AND VERIFICATION OF GRADIENT ZONE FORMATION IN CEMENTED CARBIDES
ZHANG Weibin1, SHA Chunsheng1, DU Yong1, WEN Guanghua2, XIE Wen2, WANG Shequan2
1.State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083
2.Zhuzhou Cemented Carbide Cutting Tools Limited Company, Zhuzhou 412007
Cite this article: 

ZHANG Weibin SHA Chunsheng DU Yong WEN Guanghua XIE Wen WANG Shequan. COMPUTER SIMULATIONS AND VERIFICATION OF GRADIENT ZONE FORMATION IN CEMENTED CARBIDES. Acta Metall Sin, 2011, 47(10): 1307-1314.

Download:  PDF(1248KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The thermodynamic and kinetic databases for multi–component W–C–Co–Ti–Ta–Nb–N cemented carbides were established. The Thermo–Calc software was used to describe the phase composition of alloys during gradient sintering. Based on the established thermodynamic and kinetic databases, the volume fractions of different phases and elemental concentration profiles in the WC– Ti(C, N)–Co, WC–Ti(C, N)–TaC–Co and WC–Ti(C, N)–NbC–Co alloys were simulated by means of DICTRA software. The simulated results are in good agreement with the experimental data. In order to verify the reliability of the thermodynamic and kinetic databases, a gradiently sintered WC–Ti(C, N)–TaC–NbC–Co cemented carbide has been prepared. SEM and EDS were employed to examinate the microstructure and composition in the gradient zone. The gradient zone formation of the WC– Ti(C, N)–TaC–NbC–Co cemented carbides was then simulated by DICTRA, and the simulation results show a good agreement with the experimental results.
Key words:  cemented carbide      thermodynamis      kinetics      phase diagram calculation      simulation     
Received:  23 March 2011     
Fund: 

Supported by National Natural Science Foundation of China (No.51028101), National Basic Research Program of China (No.2011CB610401) and Creative Research Group of National Nature Science Foundation of China (No.51021063)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00151     OR     https://www.ams.org.cn/EN/Y2011/V47/I10/1307

[1] Zhang W Z, Liu Y, He Y H, Wang H B. Rare Met Cem Carbides, 2005; 33(2): 28

(张武装, 刘 咏, 贺跃辉, 王海兵. 稀有金属及硬质合金, 2005; 33(2): 28)

[2] Konyashin I Y. Mater Sci Eng, 1997; A230: 213

[3] Konyashin I Y. Surf Coat Technol, 1995; 71: 277

[4] Knotek O, Loffler F, Kramer G. Int J Ref Hard Mater, 1996; 14: 195

[5] Narasimhan K, Boppana S P, Bhat D G. Wear, 1995; 188: 123

[6] Frykholm R, Ekroth M, Jansson B, Andrén H O, Ågren J. Acta Mater, 2003; 51: 1115

[7] Schwarzkopf M, Exner H E, Fischmeister H F. Mater Sci Eng, 1998; A105–106: 225

[8] Chen L M, Lengauer W, Ettmayer P, Dreyer K, Daub H W, Kassel D. Int J Ref Hard Mater, 2000; 18: 307

[9] Frykholm R, Andrén H O. Mater Chem Phys, 2001; 67: 203

[10] Andr´en H O. Mater Chem Phy, 2001; 67: 209

[11] Rosso M, Kassel D. Int J Ref Hard Mater, 1999; 17: 187

[12] Dreyer K, Kassel D. Int Plansee Seminar, 2001; 2: 768

[13] Suzuki H, Koji H, Yasuro T. Trans Jpn Inst Met, 1981; 22: 758

[14] Gustafson P, Östlund Å. Int J Ref Hard Mater, 1993–1994; 12: 129

[15] Ekroth M, Frykholm R, Lindholm M, Andrén H O, Ågren J. Acta Mater, 2000; 48: 2177

[16] Frykholm R, Ekroth M, Jansson B, Andrén H O, Ågren J. Int J Ref Hard Mater, 2001; 19: 527

[17] Ekroth M, Frisk K, Jansson B, Dumitrescu F S. Metall Mater Trans, 2000; 31B: 615

[18] Frisk K, Dumitrescu F S, Ekroth M, Jansson B, Kruse O, Sundman B. J Phase Equilib, 2001; 22: 645

[19] Gustafson P. Mater Sci Technol, 1986; 2: 635

[20] Andrén J O, Helander T, H¨oglund L H, Shi P F, Sundman B. Calphad, 2002; 26: 273

[21] Andrén H O. Mater Chem Phys, 2001; 67: 209
[1] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[4] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[5] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[6] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[7] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[8] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[9] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[10] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[11] QI Xiaoyong, LIU Wenbo, HE Zongbei, WANG Yifan, YUN Di. Phase-Field Simulation of the Densification Process During Sintering of UN Nuclear Fuel[J]. 金属学报, 2023, 59(11): 1513-1522.
[12] ZHOU Xiaobin, ZHAO Zhanshan, WANG Wanxing, XU Jianguo, YUE Qiang. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface[J]. 金属学报, 2023, 59(11): 1523-1532.
[13] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[14] DU Zonggang, XU Tao, LI Ning, LI Wensheng, XING Gang, JU Lu, ZHAO Lihua, WU Hua, TIAN Yucheng. Preparation of Ni-Ir/Al2O3 Catalyst and Its Application for Hydrogen Generation from Hydrous Hydrazine[J]. 金属学报, 2023, 59(10): 1335-1345.
[15] WANG Meng, YANG Yongqiang, Trofimov Vyacheslav, SONG Changhui, ZHOU Hanxiang, WANG Di. Effects of Particle Size on Processability of AlSi10Mg Alloy Manufactured by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 147-156.
No Suggested Reading articles found!