Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (10): 1301-1306    DOI: 10.3724/SP.J.1037.2011.00111
论文 Current Issue | Archive | Adv Search |
PHASE FIELD CRYSTAL SIMULATION OF STRESS–INDUCED ANNIHILATION OF SUB–GRAIN BOUNDARY WITH DOUBLE–ARRAY DISLOCATION
YANG Tao, CHEN Zheng, DONG Weiping
State Key Laboratory of Solidification Processing, Northwestern Ploytechnical University, Xi’an 710072
Cite this article: 

YANG Tao CHEN Zheng DONG Weiping. PHASE FIELD CRYSTAL SIMULATION OF STRESS–INDUCED ANNIHILATION OF SUB–GRAIN BOUNDARY WITH DOUBLE–ARRAY DISLOCATION. Acta Metall Sin, 2011, 47(10): 1301-1306.

Download:  PDF(1190KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The structure of symmetric tilt sub–grain boundary (SGB) and its annihilation mechanism under stress were modeled with the phase field crystal approach, including the analysis from two aspects of dislocation movement and system energy. In addition, the effects of temperature, misorientation and stress direction on SGB annihilation were also discussed. Simulated results show that the SGB is composed of double–array dislocations with a vertical distribution. The annihilation process generally contains four stages: dislocation climb, dislocation separation, another dislocation climb and separation again. The reduction of temperature hinders the process of annihilation. The SGB with a small misorientation annihilates earlier and faster than the one with a large misorientation. The annihilation differs under different stress conditions, and the compressive stress is favorable to the annihilation.
Key words:  phase field crystal model      sub–grain boundary      double–array dislocation      stress–induced annihilation     
Received:  04 March 2011     
ZTFLH: 

TG111.2

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.51075335, 10902086 and 50875217), Northwestern Ploytechnical University Foundation for Fundamental Research (No.NPU–FFR–JC201005) and Doctoral Foundation of Northwestern Ploytechnical University (No.CX201103)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00111     OR     https://www.ams.org.cn/EN/Y2011/V47/I10/1301

[1] Varma S K, Willits B L. Metall Trans, 1984; 15A: 1502

[2] Lin Y X. Rare Met Mater Eng, 1992; 21: 30

(林永新. 稀有金属材料与工程, 1992; 21: 30)

[3] Hayakawa M, Yamaguchi K, Kimura M. Mater Lett, 2004; 58: 2565

[4] Zhou L, Wei X Q, Zhou N G. Acta Metall Sin(Engl Lett), 2004; 17: 11

[5] Bobylev S V, Gutkin M Y, Ovid’ko I A. Acta Mater, 2004; 52: 3793

[6] Bobylev S V, Gutkin M Y, Ovid’ko I A. Appl Phys, 2004; 37D: 269

[7] Caturla M J, Nieh T G, Stolken J S. Appl Phys Lett, 2004; 84: 598

[8] Stefanovic P, Haataja M, Proatas N. Phys Rev, 2009; 80E: 046107

[9] Liu X M, You X C, Liu Z L, Zhuang Z. Acta Metall Sin, 2008; 44: 1025

(刘小明, 由小川, 柳占立, 庄茁. 金属学报, 2008; 44: 1025)

[10] Wang C Y, Meng Q Y, Wang Y T. Acta Metall Sin, 2009; 45: 400

(王超营, 孟庆元, 王云涛. 金属学报, 2009; 45: 400)

[11] Elder K R, Katakowski M, Haataja M, Grant M . Phys Rev Lett, 2002; 88: 245701

[12] Elder K R, Grant M. Phys Rev, 2004; 70E: 051605

[13] Chen L Q, Shen J. Comput Phys Commun, 1998; 108: 147

[14] Ren X, Wang J C, Yang Y J, Yang G C. Acta Phys Sin, 2010; 59: 3595

(任秀, 王锦程, 杨玉娟, 杨根仓. 物理学报, 2010; 59: 3595)

[15] Hirouchi T, Takaki T, Tomita Y. Comput Mater Sci, 2009; 44: 1192
[1] DONG Minghui HAN Peide ZHANG Caili YANG Yanqing ZHANG Lili LI Hongfei. FIRST-PRINCIPLES STUDY OF STACKING FAULT ENERGY AND DEFORMATION TWIN\par ENERGY IN Al-Mg ALLOYS[J]. 金属学报, 2011, 47(5): 573-577.
[2] ZHANG Han BAI Bingzhe. MICROSTRUCTURAL\, EVOLUTION OF Mn-Si-Cr MEDIUM CARBON STEEL DEFORMED UNDER UNDERCOOLED AUSTENITE STATE[J]. 金属学报, 2010, 46(1): 47-51.
No Suggested Reading articles found!