Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (9): 1103-1108    DOI: 10.3724/SP.J.1037.2010.00055
论文 Current Issue | Archive | Adv Search |
PREPARATION AND CHARACTERIZATION OF ELECTROLESS Ni COATING ON THE SURFACE OF MgO WITH POROUS STRUCTURE
LI Junming1), XUE Xiaonan1), CAI Hui2), JIANG Bailing1)
1) School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048
2) MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, Xi'an 710049
Cite this article: 

LI Junming XUE Xiaonan CAI Hui JIANG Bailing. PREPARATION AND CHARACTERIZATION OF ELECTROLESS Ni COATING ON THE SURFACE OF MgO WITH POROUS STRUCTURE. Acta Metall Sin, 2010, 46(9): 1103-1108.

Download:  PDF(895KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Generally, the surface pretreatments such as sensitization and activation are necessary for depositing a nickel metal layer on oxide surface by electroless plating, however, for an oxide surface with porous structure it is possible that the pretreatment is not necessary. In this paper, only by use of the surface activity of porous structure, an electroless plated nickel layer can be prepared on the surface of microarc-oxidation-fabricated porous magnesium oxide film in a conventional electroless nickel plating solution, consisted of nickel sulfate as main salt and sodium hypophosphite as reducing agent. Furthermore, the phase, microstructure, electrical conductivity and corrosion resistance of the obtained nickel layer were characterized. The results indicate that the 5 μm-thick nickel layer is composed of fine and homogeneously distributed nickel particles, at the same time the microstructure of nickel layer is dense. Nickel layer spreads into the micropores on the surface of porous magnesium oxide film, so that an interleaving interface is formed at nickel/oxide interface. XRD results reveal that the nickel layer contains crystalline Ni and amorphous Ni-P. Four-point probe measurement indicates that the nickel layer exhibits well electrical conductivity. Meanwhile, polarization curve reveals that corrosion potential elevates notably due to the presence of nickel layer. During electroless nickel plating the nickel ions in solution were reduced and deposited in the micropores of porous magnesium oxide film under the action of reducing agent ions, so as to generate tiny primary nickel particles, subsequently, these primary nickel particles continuously grew and spread, and finally formed an entire nickel layer on oxide surface.

Key words:  electroless nickel plating      MgO      porous structure      electrical conductivity      corrosion potential     
Received:  28 January 2010     
Fund: 

Supported by Major International Joint Research Program of China (No.2007DFB50150) and Shaanxi Provincial Project of Special Foundation of Key Disciplines

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00055     OR     https://www.ams.org.cn/EN/Y2010/V46/I9/1103

[1] Kang M, Kim J M, Kim J W, Kim Y K, Chung H, Yie J E. Surf Coat Technol, 2002; 161: 79 [2] Wu Z J, Ge S H, Zhang M H, Li W, Tao K Y. J Colloid Interf Sci, 2009; 330: 359 [3 Liu W L, Hsieh S H, Tsai T K, Chen W J, Wu S S. Thin Solid Films, 2006; 510: 102 [4] Tang X J, Bi C L, Han C X, Zhang B G. Mater Lett, 2009; 63: 840 [5] Zhou F L, Li X M, Gao X D. Chin J Inorg Chem, 2009; 25(9): 1584 (周凤玲, 李效民, 高相东. 无机化学学报, 2009; 25(9): 1584) [6] Grande F D, Thursfield A, Metcalfe I S. Solid State Ionics, 2008; 179: 2042 [7] Huo H W, Li Y, Wang F H. Corros Sci, 2004; 46: 1467 [8] Zhang Z C. Aqueous Solution Deposition Technology. Beijing: Chemical Industry Press, 2005: 142 (张忠诚. 水溶液沉积技术. 北京: 化学工业出版社, 2005: 142) [9] Sun S, Liu J G, Yan C W, Wang F H. Appl Surf Sci, 2008; 254: 5016 [10] Liu P S. Introduction to Cellular Materials. Beijing: Tsinghua University Press, 2004: 214 (刘培生. 多孔陶瓷引论. 北京: 清华大学出版社, 2004: 214) [11] Gesser H D, Goswami P C. Chem Rev, 1989; 89: 765 [12] Hench L L, West J K. Chem Rev, 1990; 90: 33 [13] ?ivcová Z, ?erny M, Pabst W, Gregorová E. J Eur Ceram Soc, 2009; 29: 2765 [14] Liu J, Miao X. J Mater Sci, 2005; 40: 6145 [15] Wang H T, Liu X Q, Meng G Y. Mater Res Bull, 1997; 32: 1705 [16] Tillous K, Toll-Duchanoy T, Bauer-Grosse E, Hericher L, Geandier G. Surf Coat Technol, 2009; 203: 2969 [17] Yerokhin A L, Nie X, Leyland A, Matthews A, Dowey S J. Surf Coat Technol, 1999; 122: 73 [18] Curran J A, Clyne T W. Acta Mater, 2006; 54: 1985 [19] Chen F, Zhou H, Yao B, Qin Z, Zhang Q F. Surf Coat Technol, 2007; 201: 4905 [20] Arrabal R, Matykina E, Hashimota T, Skeldon P, Thompson G E. Surf Coat Technol, 2009; 203: 2207 [21] Li Z S, Yang M A, Qian H C, Gao X H. Modern Surface Engineering Technology. Beijing: China Machine Press, 2007: 61 (郦振声,杨明安,钱翰城,高心海. 现代表面工程技术. 北京: 机械工业出版社, 2007: 61) [22] Cushing B L, Kolesnichenko V L, O′Connor C J. Chem Rev, 2004; 104: 3893 [23] Ambat R, Zhou W. Surf Coat Technol, 2004; 179: 124 [24] Gu C D, Lian J S, Li G Y, Niu L Y, Jiang Z H. J Chin Soc Corros Prot, 2005; 25(4): 271 (谷长栋, 连建设, 李光玉, 牛丽媛, 江中浩. 中国腐蚀与防护学报, 2005; 25(4): 271) [25] Liu Z M, Gao W. Surf Coat Technol, 2006; 200: 5087 [26] Li J Z, Shao Z C, Zhang X, Tian Y W. Surf Coat Technol, 2006; 200: 3010 [27] Yang L H, Li J Q, Zheng Y Z, Jiang W W, Zhang M L. J Alloy Compd, 2009; 467: 562 [28] Liu Z M, Gao W. Surf Coat Technol, 2006; 200: 3553 [29] Liu Z M, Gao W. Appl Surf Sci, 2006; 253: 2988 [30] Zhang H, Wang S L, Yao G C, Hua Z S. J Alloy Compd, 2009; 474: 306 [31] Crobu M, Scorciapino A, Elsener B, Rossi A. Electrochim Acta, 2008; 53: 3364 [32] Ma R Z, Jiang M H, Xu Z X. Introduction to Functional Materials Science. Beijing: Metallurgical Industry Press, 2006:21 (马如璋, 蒋民华, 徐祖雄. 功能材料学概论. 北京: 冶金工业出版社, 2006: 21)
[1] WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. 金属学报, 2023, 59(5): 679-692.
[2] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[3] LI Dou, XU Changjiang, LI Xuguang, LI Shuangming, ZHONG Hong. Thermoelectric Properties of P-Type CeyFe3CoSb12 Thermoelectric Materials and Coatings Doped with La[J]. 金属学报, 2023, 59(2): 237-247.
[4] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[5] SONG Qingzhong, QIAN Kun, SHU Lei, CHEN Bo, MA Yingche, LIU Kui. Interfacial Reaction Between Nickel-Based Superalloy K417G and Oxide Refractories[J]. 金属学报, 2022, 58(7): 868-882.
[6] HOU Jiapeng, SUN Pengfei, WANG Qiang, ZHANG Zhenjun, ZHANG Zhefeng. Breaking the Trade-Off Relation Between Strength and Electrical Conductivity: Heterogeneous Grain Design[J]. 金属学报, 2022, 58(11): 1467-1477.
[7] CUI Yang, LI Shouhang, YING Tao, BAO Hua, ZENG Xiaoqin. Research on the Thermal Conductivity of Metals Based on First Principles[J]. 金属学报, 2021, 57(3): 375-384.
[8] LI Dongmei, JIANG Beibei, LI Xiaona, WANG Qing, DONG Chuang. Composition Rule of High Hardness and Electrical Conductivity Cu-Ni-Si Alloys[J]. 金属学报, 2019, 55(10): 1291-1301.
[9] Caihong DONG, Yongli LIU, Yang QI. Effect of Thickness on the Surface and Electronic Properties of Bi Film[J]. 金属学报, 2018, 54(6): 935-942.
[10] Haoran ZHENG, Minfang CHEN, Zhen LI, Chen YOU, Debao LIU. Effects of MgO Modified HA Nanoparticles on the Microstructure and Properties of Mg-Zn-Zr/m-HA Composites[J]. 金属学报, 2017, 53(10): 1364-1376.
[11] Zujiang HUANG, Min ZHOU, Yang YANG, Quanzhi CHEN, Shiguang TANG, Weizhou LI. STUDY OF ANODIC ALUMINUM OXIDE FILM AS AN INTERLAYER TO SUPPRESS ELEMENT DIFFUSION[J]. 金属学报, 2016, 52(3): 341-348.
[12] JIANG Zitao DU Yanxia DONG Liang LU Minxu. EFFECT OF AC CURRENT ON CORROSION POTENTIAL OF Q235 STEEL[J]. 金属学报, 2011, 47(8): 997-1002.
[13] LI Guimao WANG Engang ZHANG Lin ZUO Xiaowei HE Jicheng. EFFECTS OF HIGH MAGNETIC FIELD ON THE PRECIPITATE AND PROPERTY OF Cu-25%Ag ALLOY[J]. 金属学报, 2010, 46(9): 1128-1132.
[14] LIU Aiping ZHU Jiaqi TANG Weihua LI Chaorong. ELECTRICAL PROPERTIES OF PHOSPHORUS INCORPORATED TETRAHEDRAL AMORPHOUS CARBON FILMS[J]. 金属学报, 2010, 46(2): 201-205.
[15] QU Wensheng; ZHANG Gong; LOU Langhong; DONG Jiasheng; YANG Ke. EFFECTS OF NiSO4 AND NaCl CONTENTS ON THROWING POWER OF SOLUTION ELECTROPLATING Ni AND Ni DEPOSIT[J]. 金属学报, 2008, 44(3): 341-345 .
No Suggested Reading articles found!