PREPARATION AND CHARACTERIZATION OF ELECTROLESS Ni COATING ON THE SURFACE OF MgO WITH POROUS STRUCTURE
LI Junming1), XUE Xiaonan1), CAI Hui2), JIANG Bailing1)
1) School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048
2) MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, Xi'an 710049
Cite this article:
LI Junming XUE Xiaonan CAI Hui JIANG Bailing. PREPARATION AND CHARACTERIZATION OF ELECTROLESS Ni COATING ON THE SURFACE OF MgO WITH POROUS STRUCTURE. Acta Metall Sin, 2010, 46(9): 1103-1108.
Generally, the surface pretreatments such as sensitization and activation are necessary for depositing a nickel metal layer on oxide surface by electroless plating, however, for an oxide surface with porous structure it is possible that the pretreatment is not necessary. In this paper, only by use of the surface activity of porous structure, an electroless plated nickel layer can be prepared on the surface of microarc-oxidation-fabricated porous magnesium oxide film in a conventional electroless nickel plating solution, consisted of nickel sulfate as main salt and sodium hypophosphite as reducing agent. Furthermore, the phase, microstructure, electrical conductivity and corrosion resistance of the obtained nickel layer were characterized. The results indicate that the 5 μm-thick nickel layer is composed of fine and homogeneously distributed nickel particles, at the same time the microstructure of nickel layer is dense. Nickel layer spreads into the micropores on the surface of porous magnesium oxide film, so that an interleaving interface is formed at nickel/oxide interface. XRD results reveal that the nickel layer contains crystalline Ni and amorphous Ni-P. Four-point probe measurement indicates that the nickel layer exhibits well electrical conductivity. Meanwhile, polarization curve reveals that corrosion potential elevates notably due to the presence of nickel layer. During electroless nickel plating the nickel ions in solution were reduced and deposited in the micropores of porous magnesium oxide film under the action of reducing agent ions, so as to generate tiny primary nickel particles, subsequently, these primary nickel particles continuously grew and spread, and finally formed an entire nickel layer on oxide surface.
Supported by Major International Joint Research Program of China (No.2007DFB50150) and Shaanxi Provincial Project of Special Foundation of Key Disciplines
[1] Kang M, Kim J M, Kim J W, Kim Y K, Chung H, Yie J E. Surf Coat Technol, 2002; 161: 79
[2] Wu Z J, Ge S H, Zhang M H, Li W, Tao K Y. J Colloid Interf Sci, 2009; 330: 359
[3 Liu W L, Hsieh S H, Tsai T K, Chen W J, Wu S S. Thin Solid Films, 2006; 510: 102
[4] Tang X J, Bi C L, Han C X, Zhang B G. Mater Lett, 2009; 63: 840
[5] Zhou F L, Li X M, Gao X D. Chin J Inorg Chem, 2009; 25(9): 1584
(周凤玲, 李效民, 高相东. 无机化学学报, 2009; 25(9): 1584)
[6] Grande F D, Thursfield A, Metcalfe I S. Solid State Ionics, 2008; 179: 2042
[7] Huo H W, Li Y, Wang F H. Corros Sci, 2004; 46: 1467
[8] Zhang Z C. Aqueous Solution Deposition Technology. Beijing: Chemical Industry Press, 2005: 142
(张忠诚. 水溶液沉积技术. 北京: 化学工业出版社, 2005: 142)
[9] Sun S, Liu J G, Yan C W, Wang F H. Appl Surf Sci, 2008; 254: 5016
[10] Liu P S. Introduction to Cellular Materials. Beijing: Tsinghua University Press, 2004: 214
(刘培生. 多孔陶瓷引论. 北京: 清华大学出版社, 2004: 214)
[11] Gesser H D, Goswami P C. Chem Rev, 1989; 89: 765
[12] Hench L L, West J K. Chem Rev, 1990; 90: 33
[13] ?ivcová Z, ?erny M, Pabst W, Gregorová E. J Eur Ceram Soc, 2009; 29: 2765
[14] Liu J, Miao X. J Mater Sci, 2005; 40: 6145
[15] Wang H T, Liu X Q, Meng G Y. Mater Res Bull, 1997; 32: 1705
[16] Tillous K, Toll-Duchanoy T, Bauer-Grosse E, Hericher L, Geandier G. Surf Coat Technol, 2009; 203: 2969
[17] Yerokhin A L, Nie X, Leyland A, Matthews A, Dowey S J. Surf Coat Technol, 1999; 122: 73
[18] Curran J A, Clyne T W. Acta Mater, 2006; 54: 1985
[19] Chen F, Zhou H, Yao B, Qin Z, Zhang Q F. Surf Coat Technol, 2007; 201: 4905
[20] Arrabal R, Matykina E, Hashimota T, Skeldon P, Thompson G E. Surf Coat Technol, 2009; 203: 2207
[21] Li Z S, Yang M A, Qian H C, Gao X H. Modern Surface Engineering Technology. Beijing: China Machine Press, 2007: 61
(郦振声,杨明安,钱翰城,高心海. 现代表面工程技术. 北京: 机械工业出版社, 2007: 61)
[22] Cushing B L, Kolesnichenko V L, O′Connor C J. Chem Rev, 2004; 104: 3893
[23] Ambat R, Zhou W. Surf Coat Technol, 2004; 179: 124
[24] Gu C D, Lian J S, Li G Y, Niu L Y, Jiang Z H. J Chin Soc Corros Prot, 2005; 25(4): 271
(谷长栋, 连建设, 李光玉, 牛丽媛, 江中浩. 中国腐蚀与防护学报, 2005; 25(4): 271)
[25] Liu Z M, Gao W. Surf Coat Technol, 2006; 200: 5087
[26] Li J Z, Shao Z C, Zhang X, Tian Y W. Surf Coat Technol, 2006; 200: 3010
[27] Yang L H, Li J Q, Zheng Y Z, Jiang W W, Zhang M L. J Alloy Compd, 2009; 467: 562
[28] Liu Z M, Gao W. Surf Coat Technol, 2006; 200: 3553
[29] Liu Z M, Gao W. Appl Surf Sci, 2006; 253: 2988
[30] Zhang H, Wang S L, Yao G C, Hua Z S. J Alloy Compd, 2009; 474: 306
[31] Crobu M, Scorciapino A, Elsener B, Rossi A. Electrochim Acta, 2008; 53: 3364
[32] Ma R Z, Jiang M H, Xu Z X. Introduction to Functional Materials Science. Beijing: Metallurgical Industry Press, 2006:21
(马如璋, 蒋民华, 徐祖雄. 功能材料学概论. 北京: 冶金工业出版社, 2006: 21)