Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (3): 341-348    DOI: 10.11900/0412.1961.2015.00385
Orginal Article Current Issue | Archive | Adv Search |
STUDY OF ANODIC ALUMINUM OXIDE FILM AS AN INTERLAYER TO SUPPRESS ELEMENT DIFFUSION
Zujiang HUANG1,Min ZHOU1,2,Yang YANG1,Quanzhi CHEN1,Shiguang TANG1,Weizhou LI1()
1 School of Materials Science and Engineering, Guangxi University, Nanning 530004, China
2 Foxconn Technology Group, Shenzhen 518109, China
Cite this article: 

Zujiang HUANG, Min ZHOU, Yang YANG, Quanzhi CHEN, Shiguang TANG, Weizhou LI. STUDY OF ANODIC ALUMINUM OXIDE FILM AS AN INTERLAYER TO SUPPRESS ELEMENT DIFFUSION. Acta Metall Sin, 2016, 52(3): 341-348.

Download:  HTML  PDF(4119KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Element interdiffusion will accelerate failure of surface coating systems after a long time service at high temperature. To extend service life of the coatings, developing a diffusion barrier between the coating and the substrate is considered as an efficient way. Many research results showed that a diffusion barrier with single function such as metallic or ceramic one can not meet requirements for strong barrier ability and strong interfacial strength of the coatings onto the substrate at the same time. Anodic aluminum oxide (AAO) film with porous surface structure, which has an effective role for element diffusion so as to strengthen the interfacial adhesion rapidly, and a dense Al2O3 sublayer to suppress the interdiffusion was effectively used as diffusion barrier in this work and interdiffusion barrier ability was investigated. The AAO film was obtained by anodizing Al film deposited on C103 niobium alloy by vacuum evaporation technology, and an electroplating Ni plating was prepared as an overlayer. Vacuum heat treatment was applied to promote element diffusion. The results indicated that substantial diffusion occurred in the Ni/C103 specimen without an interlayer and in the Ni/Al/C103 specimen with Al film as an interlayer. In the Ni/AAO/C103 specimen, hardly any interdiffusion was observed. After 4 h vacuum annealing at 900 ℃, NbNi3 phase was detected on the Ni/C103 and Ni/Al/C103 specimens, which could not be found in the Ni/AAO/C103 specimen. Nb content in the Ni overlayer of Ni/C103, Ni/Al/C103 and Ni/AAO/C103 specimens was 7.05%, 5.08% and 3.55%, respectively. Ni content in the substrate of Ni/C103, Ni/Al/C103 and Ni/AAO/C103 specimens diffusing from the overlayer was 6.84%, 3.62% and 2.85%, respectively. Thus, AAO film exhibited strong barrier ability in suppressing element diffusion. From calculation of the Fick's law, it was found that diffusion coefficient of Ni and Nb in the AAO film at 900 ℃ was 3.28×10-14 m2/s and 2.16×10-14 m2/s, respectively, and it was raised to 1.03×10-13 m2/s and 3.58×10-14 m2/s at 1000 ℃, respectively.

Key words:  anodic aluminum oxide (AAO) film      diffusion barrier      porous structure      Fick's law      diffusion coefficient     
Received:  13 July 2015     
Fund: Supported by National Natural Science Foundation of China (Nos.51371059, 51361003 and 51001032), Guangxi Natural Science Foundation (No.2014GXNSFCA118013), High-Level Innovative Team and Outstanding School Program in Guangxi Colleges (the Second Batch), Innovative Research Team Project of Guangxi Natural Science Foundation (No.2011GXNSFF018001)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00385     OR     https://www.ams.org.cn/EN/Y2016/V52/I3/341

Fig.1  Schematic of positions in the anodic aluminum oxide (AAO) film for EDS analysis
Fig.2  Surface SEM images of the as-deposited coatings (a) vacuum evaporated Al film (b) AAO film (c) Ni plating
Fig.3  XRD patterns of the as-deposited coatings Ni/C103 without interlayer, Ni/Al/C103 with Al film as interlayer and Ni/AAO/C103 with AAO film as interlayer
Fig.4  Surface SEM images of the coatings Ni/C103 (a, b), Ni/Al/C103 (c, d) and Ni/AAO/C103 (e, f) after vacuum annealing at 900 ℃ (a, c, e) and 1000 ℃ (b, d, f) for 4 h
Fig.5  XRD patterns of the coatings Ni/C103, Ni/Al/C103 and Ni/AAO/C103 after vacuum annealing at 900 ℃ and Ni/AAO/C103 at 1000 ℃ for 4 h
Fig 6  Cross-sectional SEM images and EDS analysis selection areas of the coatings Ni/C103 (a), Ni/Al/C103 (b) and Ni/ AAO/C103 (c) after annealing at 900 ℃ for 4 h
Table 1  EDS analysis of element content in different zones of the cross-sectional SEM images in Fig.6
Fig 7  Atomic fraction of Ni (a) and Nb (b) in different distances along cross sections of Ni/AAO/C103 after deposition and annealing at 900 and 1000 ℃
Table 2  Diffusion coefficient of Ni and Nb in the interlayer of Ni/AAO/C103 after annealing at 900 and 1000 ℃
Fig 8  Z (error function argument) linear fitting of Ni (a) and Nb (b) in the interlayer of Ni/AAO/C103 specimen after annealing at 900 and 1000 ℃
[1] Wang X Y, Xin L, Wei H, Zhu S L, Wang F H.Corros Sci Prot Technol, 2013; 25: 175
[1] (王心悦, 辛丽, 韦华, 朱圣龙, 王福会. 腐蚀科学与防护技术, 2013; 25: 175)
[2] Liu Q, Yang Y F, Bao Z B, Zhu S L, Wang F H.Acta Metall Sin, 2014; 50: 1102
[2] (柳泉, 阳颖飞, 鲍泽斌, 朱圣龙, 王福会. 金属学报, 2014; 50: 1102)
[3] Li M H, Zhang Z Y, Sun X F, Li J G, Yin F S, Hu W Y, Guan H R, Hu Z Q.Surf Coat Technol, 2003; 165: 241
[4] Li S, Song J, Zhou C.Intermetallics, 2005; 13: 309
[5] Li H Q, Gong J, Sun C.Acta Metall Sin, 2012; 48: 579
[5] (李海庆, 宫骏, 孙超. 金属学报, 2012; 48: 579)
[6] van der Zwaag S. Self Healing Materials: an Alternative Approach to 20 Centuries of Materials Science. Dordrecht: Springer, 2007: 309
[7] Li W Z, Wang Q M, Gong J, Sun C, Jiang X.Acta Metall Sin, 2010; 46: 561
[7] (李伟洲, 王启民, 宫骏, 孙超, 姜辛. 金属学报, 2010; 46: 561)
[8] Li W Z, Wang Q M, Sun C.Mater Rev, 2009; 23(5): 30
[8] (李伟洲, 王启民, 孙超. 材料导报, 2009; 23(5): 30)
[9] Li W Z, Li Y Q, Wang Q M, Sun C, Jiang X.Corros Sci, 2010; 52: 1753
[10] Ma J, Jiang S M, Gong J, Sun C.Corros Sci, 2011; 53: 2894
[11] Lou H Y, Wang F H.Vacuum, 1992; 43: 757
[12] Haynes J A, Zhang Y, Cooley K M, Walker L, Reeves K S, Pint B A.Surf Coat Technol, 2004; 188: 153
[13] Song Y X, Murakami H, Zhou C G.J Mater Sci Technol, 2011; 27: 280
[14] Wang Y, Guo H B, Peng H, Peng L Q, Gong S K.Intermetallics, 2011; 19: 191
[15] Wang Q M, Zhang K, Gong J, Gui Y Y, Sun C, Wen L S.Acta Mater, 2007; 55: 1427
[16] Li H Q, Wang Q M, Jiang S M, Ma J, Gong J, Sun C.Corros Sci, 2011; 53: 1097
[17] Cheng Y X, Wang W, Zhu S L, Xin L, Wang F H.Intermetallics, 2010; 18: 736
[18] Li W Z, Yao Y, Li Y Q, Li J B, Sun C, Jiang X.Mater Sci Eng, 2009; A512: 117
[19] Heuer A H.J Eur Ceram Soc, 2008; 28: 1495
[20] Cui J W, Wu Y C, Wang Y, Zheng H M, Xu G Q, Zhang X Y.Appl Surf Sci, 2012; 258: 5305
[21] Poinern G E J, Ali N, Fawcett D.Materials, 2011; 4: 487
[22] McQuang M K, Toro A, Geertruyden W V, Misiolek W Z.J Mater Sci, 2011; 46: 243
[23] Belwalkar A, Grasing E, Geertruyden V W, Huang Z, Misiolek W Z.J Membr Sci, 2008; 319: 192
[24] Li F Y, Zhang L, Metzger R M.Chem Mater, 1998; 10: 2470
[25] Galstyan V, Comini E, Faglia G, Sberveglieri G.Cryst Eng Comm, 2014; 16: 10273
[26] Tzvetkov B T, Bojinov M S, Girginov A A.Bulg Chem Commun, 2008; 40: 261
[1] WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. 金属学报, 2023, 59(5): 679-692.
[2] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[3] Jianxiong ZOU,Bo LIU,Liwei LIN,Ding REN,Guohua JIAO,Yuanfu LU,Kewei XU. Microstructure and Thermal Stability of MoC DopedRu-Based Alloy Films as Seedless Diffusion Barrier[J]. 金属学报, 2017, 53(1): 31-37.
[4] Yuanrong LIU,Weimin CHEN,Ying TANG,Yong DU,Lijun ZHANG. APPLICATION OF PRAGMATIC NUMERICAL INVERSE METHOD IN COMPUTATION OF INTERDIFFUSION COEFFICIENTS IN Al TERNARY ALLOYS[J]. 金属学报, 2016, 52(8): 1009-1016.
[5] ZHANG Lidong, WANG Fei, CHEN Shunli, WANG Yuan. FABRICATION AND THERMAL STABILITY OF AlCrTaTiNi/(AlCrTaTiNi)N BILAYER DIFFUSION BARRIER[J]. 金属学报, 2013, 49(12): 1611-1616.
[6] ZHANG Jinling1,2,3, FENG Zhiyong1, HU Lanqing1,2,3,WANG Shebin1,2,3, XU Bingshe1,2,3. PRECIPITATION BEHAVIOR OF AZ91 MAGNESIUM ALLOYS WITH DIFFERENT La CONTENTS[J]. 金属学报, 2012, 48(5): 607-614.
[7] . HIGH TEMPERATURE OXIDATION RESISTANCE AND MECHANICAL PROPERTIES OF NiCrAlY/Al--Al2O3 COATINGS ON AN ORTHORHOMBIC Ti2AlNb ALLOY[J]. 金属学报, 2012, 48(5): 579-586.
[8] . PHASE FIELD SIMULATION OF SINTERING PROCESS IN BIPHASIC POROUS MATERIAL[J]. 金属学报, 2012, 48(10): 1207-1214.
[9] CHEN Yexin CHANG Qinggang. EFFECT OF TRAPS ON DIFFUSIVITY OF HYDROGEN IN 20g CLEAN STEEL[J]. 金属学报, 2011, 47(5): 548-552.
[10] ZHANG Lu SHI Nanlin GONG Jun PEI Zhiliang GAO Lijun SUN Chao. PREPARATION OF COMPOSITE COATING (Al+Al2O3) ON SiC LONG FIBER[J]. 金属学报, 2011, 47(4): 497-501.
[11] LI Junming XUE Xiaonan CAI Hui JIANG Bailing. PREPARATION AND CHARACTERIZATION OF ELECTROLESS Ni COATING ON THE SURFACE OF MgO WITH POROUS STRUCTURE[J]. 金属学报, 2010, 46(9): 1103-1108.
[12] LI Weizhou WANG Qimin GONG Jun SUN Chao JIANG Xin. ONE-STEP DEPOSITION AND INTERFACIAL ADHESIVE STRENGTH OF THE MULTILAYER SYSTEM WITH A DIFFUSION BARRIER[J]. 金属学报, 2010, 46(5): 561-568.
[13] CAI Hui WANG Fei WANG Yaping SONG Xiaoping DING Bingjun. FABRICATION OF Cu/Si COMPOSITES ON SOL–GEL PRETREATED Si POWDERS[J]. 金属学报, 2009, 45(10): 1261-1266.
[14] ;. The adhesive behaviour of NiCrAlY coatings with Cr-O-N diffusion barriers[J]. 金属学报, 2008, 44(7): 876-882 .
[15] . The distribution and diffusion of carbon atoms during deformation of undercooled austenite in medium carbon steel[J]. 金属学报, 2007, 43(8): 785-790 .
No Suggested Reading articles found!