Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (7): 769-774    DOI: 10.3724/SP.J.1037.2010.00079
论文 Current Issue | Archive | Adv Search |
EFFECT OF GRAIN SIZE ON THE GRAIN BOUNDARY CHARACTER DISTRIBUTIONS OF COLD ROLLED AND ANNEALED PURE COPPER
CAI Zhengxu1), WANG Weiguo1), FANG Xiaoying1), GUO Hong2)
1) School of Mechanical Engineering, Shandong University of Technology, Zibo 255049
2) Center of Testing and Analysis, Shandong University of Technology, Zibo 255049
Cite this article: 

CAI Zhengxu WANG Weiguo FANG Xiaoying GUO Hong. EFFECT OF GRAIN SIZE ON THE GRAIN BOUNDARY CHARACTER DISTRIBUTIONS OF COLD ROLLED AND ANNEALED PURE COPPER. Acta Metall Sin, 2010, 46(7): 769-774.

Download:  PDF(1054KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Pure copper (99.97%) samples with varied grain sizes were cold rolled and annealed at first and then their grain boundary character distributions (GBCDs) were characterized by electron back scatter diffraction (EBSD) techniques. The results showed that the sample with finer initial grain size (12 μm) appeared to be largely populated by the so-called special boundaries such as Σ3n (n=1, 2, 3) after cold rolling and annealing, the fraction of Σ3n boundaries reached 75.7% and the averaged size of clusters of grains with Σ3n (n=1, 2, 3) orientation relationships (Σ3n CG) were as large as 200 $\mu$m in this sample. However, with initial grain size increasing, the fraction of special grain boundaries as well as the size of Σ3n CG in the samples were decreasing dramatically. In situ EBSD observation, twin-filtering and five parameter method (FPM) analyses indicated that triple-junctions are the preferred sites for the nucleation of incoherent Σ3 boundaries which play a important role in enhancing the fraction of special boundaries.It accounts for primarily the desired GBCD results as obtained in the sample with finer initial grain size.

Key words:  pure copper      grain boundary character distribution (GBCD)      grain size      triple junctions     
Received:  06 February 2010     
Fund: 

Supported by Nature Science Foundation of China (Nos.50771060 and 50974147)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00079     OR     https://www.ams.org.cn/EN/Y2010/V46/I7/769

[1] Watanabe T. Res Mech, 1984; 11: 47
[2] Palumbo G, Erb U. MRS Bull, 1999; 11: 27
[3] Kumar B R, Das S K, Mahato B, Das A, Chowdhury S G. Mater Sci Eng, 2007; A454–455: 239
[4] Wang W G. Mater Sci Forum, 2007; 539–543: 3389
[5] Randle V. Acta Mater 1999, 47,4187
[6] Shimada M, Kokawa H, Wang Z J, Sato, Y S, Karibe I. Acta Mater 2002, 50,2331
[7] Michiuchi M, Kokawa H, Wang Z J, Sato Y S, Sakai K. Acta Mater 2006, 54,5179
[8] Fang X Y, Zhang K, Guo H, Wang W G, Zhou B X. Mater Sci Eng, 2008; A487: 7
[9] Xia S, Zhou B X, Chen W J, Wang W G. Scr Mater 2006, 54,2019
[10] Wang W G, Zhou B X, Feng L. Acta Metall Sin, 2006; 42: 715
  王卫国, 周邦新, 冯 柳. 金属学报 2006, 42,715  浏览
[11] Wang W G, Guo H. Mater Sci Eng, 2007; A445–446: 199
[12] Humphreys F J, Hatherly M. Recrystallization and related annealing phenomenon. Oxford: Elsevier Ltd, 2004
[13] Fang X Y, Wang W G, Cai Z X, Guo H, Zhou B X. Mater Sci Eng, 2010; A527: 1571
[14] Wang W G, Yin F X, Guo H, Li H, Zhou B X. Mater Sci Eng, 2008; A491: 199
[15] Zhang X, Wang W G, Guo H, Jiang Y. Acta Metall Sin, 2007; 43: 454
  张欣, 王卫国, 郭红, 姜英. 金属学报 2007, 43,454  浏览
[16] Wang W G, Zhou B X, Guo H. Mater Sci Forum, 2010; 638–642: 2864
[17] Cai Z X, Wang W G, Fang X Y, Guo H. Chin J Stereology Image Analysis (in press).
[18] (蔡正旭, 王卫国, 方晓英, 郭 红. 中国体视学与图像分析, 组版中)
[19] Brandon D G. Acta Metall, 1964; 14: 1479
[20] Rohrer G S, Saylor D M, Dasher B E, Adams B L. Z Metall, 2004; 95: 197
[21] Saylor D M, Dasher B E, Adams B L. Metall Mater Trans, 2004; 35A: 1981
[22] Wright S I, Larsen R J.. J Microsc 2002, 205,245
[23] Miura H, Sakai T, Jonas J J. Scr Mater, 2006; 55 167
[24] Zhang Y B, Liu Q, Godfrey A, Liu W. Acta Metall Sin, 2009; 45: 1159
  张玉彬, 刘庆, Godfrey A, 刘伟. 金属学报 2009, 45,1159  浏览
[25] Wang W G. Chin J Stereology Image Analysis, 2007; 12: 239
  (王卫国. 中国体视学与图像分析, 2007; 12: 239)
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[3] ZHANG Shouqing, HU Xiaofeng, DU Yubin, JIANG Haichang, PANG Huiyong, RONG Lijian. Cross-Section Effect of Ni-Cr-Mo-B Ultra-Heavy Steel Plate for Offshore Platform[J]. 金属学报, 2020, 56(9): 1227-1238.
[4] XU Zhanyi, SHA Yuhui, ZHANG Fang, ZHANG Huabing, LI Guobao, CHU Shuangjie, ZUO Liang. Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel[J]. 金属学报, 2020, 56(8): 1067-1074.
[5] HE Shuwen, WANG Minghua, BAI Qin, XIA Shuang, ZHOU Bangxin. Effect of TaC Content on Microstructure and Mechanical Properties of WC-TiC-TaC-Co Cemented Carbide[J]. 金属学报, 2020, 56(7): 1015-1024.
[6] HUA Hanyu,XIE Jun,SHU Delong,HOU Guichen,Naicheng SHENG,YU Jinjiang,CUI Chuanyong,SUN Xiaofeng,ZHOU Yizhou. Influence of W Content on the Microstructure of Nickel Base Superalloy with High W Content[J]. 金属学报, 2020, 56(2): 161-170.
[7] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[8] Yi MEI, Quanlong SUN, Lihua YU, Chuanrong WANG, Huaqiang XIAO. Grain Size Prediction of Aluminum Alloy Dies Castings Based on GA-ELM[J]. 金属学报, 2017, 53(9): 1125-1132.
[9] Ming ZHANG, Guoquan LIU, Benfu HU. Effect of Microstructure Instability on Hot Plasticity During Thermomechanical Processing in PM Nickel-Based Superalloy[J]. 金属学报, 2017, 53(11): 1469-1477.
[10] Quan FU,Yuhui SHA,Zhenghua HE,Fan LEI,Fang ZHANG,Liang ZUO. Recrystallization Texture and Magnetostriction in Binary Fe81Ga19 Sheets[J]. 金属学报, 2017, 53(1): 90-96.
[11] Yongfeng SONG, Xiongbing LI, Haiping WU, Jiayong SI, Xiaoqin HAN. EFFECTS OF IN718 GRAIN SIZE ON ULTRASONICBACKSCATTING SIGNALS AND ITS NONDE-STRUCTIVE EVALUATION METHOD[J]. 金属学报, 2016, 52(3): 378-384.
[12] Jin LIU,Guohui ZHU. MODEL OF THE EFFECT OF GRAIN SIZE ON PLASTI-CITY IN ULTRA-FINE GRAIN SIZE STEELS[J]. 金属学报, 2015, 51(7): 777-783.
[13] Qing ZHAO,Shuang XIA,Bangxin ZHOU,Qin BAI,Cheng SU,Baoshun WANG,Zhigang CAI. EFFECT OF DEFORMATION AND THERMOMECHA- NICAL PROCESSING ON GRAIN BOUNDARY CHARACTER DISTRIBUTION OF ALLOY 825 TUBES[J]. 金属学报, 2015, 51(12): 1465-1471.
[14] LI Xiongbing, SONG Yongfeng, NI Peijun, LIU Feng. ULTRASONIC EVALUATION METHOD FOR GRAIN SIZE BASED ON MULTI-SCALE ATTENUATION[J]. 金属学报, 2015, 51(1): 121-128.
[15] HOU Danhui, LIANG Songmao, CHEN Rongshi, DONG Chuang. SOLIDIFICATION BEHAVIOR AND GRAIN SIZE OF SAND CASTING Mg-6Al-xZn ALLOYS[J]. 金属学报, 2014, 50(5): 601-609.
No Suggested Reading articles found!