Please wait a minute...
金属学报  2006, Vol. 42 Issue (7): 715-721     
  论文 本期目录 | 过刊浏览 |
冷轧变形Pb--Ca--Sn--Al合金在回复和再结晶过程中的晶界特征分布
王卫国 周邦新 冯 柳 张 欣 夏 爽
山东理工大学机械工程学院
Grain Boundary Character Distributions (GBCD) of Cold-Rolled Pb--Ca--Sn--Al Alloy
WANG Weiguo; ZHOU Bangxin; FENG Liu; ZHANG Xin; XIA Shuang
School of Mechanical Engineering ; Shandong University of Technology; Zibo 255049
引用本文:

王卫国; 周邦新; 冯柳; 张欣; 夏爽 . 冷轧变形Pb--Ca--Sn--Al合金在回复和再结晶过程中的晶界特征分布[J]. 金属学报, 2006, 42(7): 715-721 .
, , , , . Grain Boundary Character Distributions (GBCD) of Cold-Rolled Pb--Ca--Sn--Al Alloy[J]. Acta Metall Sin, 2006, 42(7): 715-721 .

全文: PDF(954 KB)  
摘要: 采用电子背散射衍射(EBSD)技术研究了冷轧变形Pb-0.1%Ca-1.5%Sn-0.026%Al合金在回复和再结晶过程中的晶界特征分布(GBCD)。结果表明:在回复过程中,合金内形成了比例超过60%的平直的∑ 3晶界,这类晶界不处在由一般大角度晶界构成的晶界网络上,不能使合金的GBCD得到优化;相反,在再结晶过程中,除了生成比例超过65%的 ∑3晶界外,还出现了较多的 ∑9和 ∑27等低∑重位点阵晶界(CSL),并且这些晶界和相当多的弯曲的 ∑3晶界均处在由一般大角度晶界构成的晶界网络上,可以使合金的GBCD得到优化。进一步的分析指出:回复过程中所形成的平直的 ∑3晶界是共格孪晶界,它们能量很低,很稳定,一般很难迁移;在再结晶过程中,除了生成不可迁移的共格的 ∑3孪晶界外,还可形成大量可迁移的弯曲的非共格 ∑3晶界,这类晶界的迁移和彼此会合可形成 ∑9和 ∑27等 ∑3n(n为正的整数)晶界,这是合金GBCD得到优化的根源。
关键词 Pb-Ca-Sn-Al合金回复再结晶晶界特征分布    
Abstract:Grain boundary character distribution (GBCD) of cold-rolled Pb-Ca-Sn-Al alloy during recovery and recrystallization was investigated by means of electron back scatter diffraction (EBSD).The results indicate straight ∑3 boundaries of over 60% (length fraction of total boundaries, the same as follows) are introduced in the alloy during recovery. Such boundaries are not distributed in the network of general high angle boundaries (HABs) and the GBCD are not optimized. Conversely, in the recrystallization, apart from ∑3 boundaries of over 65% , a fairly amount of ∑9 and ∑27 coincidence site lattice (CSL) boundaries are appeared. ∑9 and ∑27 boundaries along with a great deal of curved ∑3 boundaries are located in the network of HABs and the GBCD are optimized. Further discussion pointed out the straight ∑3 boundaries formed in recovery are <111>60°coherent twin boundaries, they are stable and immobile. While, the ∑3 boundaries developed in recrystallization comprised of not only coherent twin boundaries but also most of incoherent ones. The migration of incoherent ∑3 boundaries as well as the interaction between them result in the formation of ∑9,∑27 and other ∑3n (n is a positive integer) boundaries, and it is the root of GBCD optimization.
Key wordsPb-Ca-Sn-Al alloy    recovery    recrystallization    grain boundary character distribution
收稿日期: 2005-09-05     
ZTFLH:  TG111.7  
[1] Palumbo G, Erb U. MRS Bull, 1999; 11: 27
[2] Watanabe T. Res Mech, 1984; 11: 47
[3] Lin P, Palumbo G, Erb U,Aust K T.Scr Metall Mater, 1995; 33: 1387
[4] King W E,Schwarts A J. Scr Mater, 1997; 38: 449
[5] Lehockey E M, Limoges D, Palumbo G, Sklarchuk J,Tomantschger K, Vincze A. J Power Source,1999;78:79
[6] Shimada M, Kokawa H, Wang Z J, Sato Y S,Karibe I.Acta Mater, 2002; 50: 2331
[7] Brandon D G, Ralph B,Ranganathan S, Wald M S. Acta Metall, 1964; 12: 813
[8] Randle V, Davies H, Cross I. Current Opinion Solid StateMater Sci, 2001; 5: 3
[9] Davies H, Randle V. J Microscopy, 2002; 205: 253
[10] Randle V, Davies P, Hulm B. Philos Mag, 1999; 79A: 305
[11] Randle V. Scr Mater, 2001; 44: 2789
[12] Randle V, Hu Y. J Mater Sci, 2005; 40: 3243
[13] Ke T S. Solid State Theory of Internal Friction. Beijing:Science Press, 2000: 460 (葛庭燧.固体内耗理论基础.北京:科学出版社,2000:460)
[14] Kuhlmann-Wilsdorf D. Mater Sci Eng, 1989; A113: 1
[15] Yu Y N. The Principles of Metal Science. Beijing: Metallurgical Industry Press , 2000: 409 (余永宁.金属学原理.北京:冶金工业出版社,2000:409)
[16] Hu H. Recovery and Recrystallization of Metals.New York: Chapman & Hall, 1963: 344
[17] Thomoson C B,Randle V.Acta Mater,1997;45:4909
[18] Randle V.Acta Mater,1999; 47: 4187
[19] Kumar M,Schwarts A J,King W E.Acta Mater,2002;50: 2599
[20] Don J,Majumdar S. Acta Metall, 1984; 34: 961
[21] Lee D S, Ryoo S H, Hwang S K. J Mater Eng, 2003; 354A: 106
[22] Palumbo G, Aust K T. In: Weiland H, Wolf D eds., Grain Growth in Polycrystalline,Warrendale, PA: TMS, 1998:311
[23] Watanabe T. Bull Jpn Inst Met, 1992; 31: 138
[24] Xia S, Zhou B X, Chen W J, Wang W G. Acta Metall Sin,2006; 42: 129 (夏爽,周邦新,陈文觉,王卫国.金属学报,2006;42:129)
[25] Harase J. Can Metall Q, 1995; 34: 185K
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[5] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[6] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[7] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[8] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[9] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[10] 姜巨福, 张逸浩, 刘英泽, 王迎, 肖冠菲, 张颖. RAP法制备AlSi7Mg合金半固态坯料研究[J]. 金属学报, 2021, 57(6): 703-716.
[11] 易晓鸥, 韩文妥, 刘平平, FERRONIFrancesco, 詹倩, 万发荣. 金属W中辐照缺陷的产生、演化与热回复机制[J]. 金属学报, 2021, 57(3): 257-271.
[12] 李彦默, 郭小辉, 陈斌, 李培跃, 郭倩颖, 丁然, 余黎明, 苏宇, 李文亚. GH4169合金与S31042钢线性摩擦焊接头组织及力学性能[J]. 金属学报, 2021, 57(3): 363-374.
[13] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[14] 李金山, 唐斌, 樊江昆, 王川云, 花珂, 张梦琪, 戴锦华, 寇宏超. 高强亚稳β钛合金变形机制及其组织调控方法[J]. 金属学报, 2021, 57(11): 1438-1454.
[15] 刘超, 姚志浩, 江河, 董建新. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制[J]. 金属学报, 2021, 57(10): 1309-1319.