Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (6): 755-760    DOI: 10.3724/SP.J.1037.2009.00597
论文 Current Issue | Archive | Adv Search |
THE SINGLE EFFECT OF MICROBE ON THE CORROSION BEHAVIORS OF 25 STEEL IN SEAWATER
WU Jinyi 1; 3; CHAI Ke 1; XIAO Weilong 1; YANG Yuhui 2; Han Enhou 3
1. Key Laboratory of Ministry of Education for Application Technology of Chemical Materials in Hainan Superior Resources; Material and Chemical Engineering College; Hainan University; Haikou 570228
2. Agricultural College; Hainan University; Haikou 570228
3. State Key Laboratory for Corrosion and Protection of Metals; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

WU Jinyi CHAI Ke XIAO Weilong YANG Yuhui Han Enhou. THE SINGLE EFFECT OF MICROBE ON THE CORROSION BEHAVIORS OF 25 STEEL IN SEAWATER. Acta Metall Sin, 2010, 46(6): 755-760.

Download:  PDF(1155KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Biological elements have a significant impact on lifetime prediction of marine carbon steel facilities. Microbe can produce pitting, crevice corrosion, selective dealloying and stress–oriented hydrogen–induced cracking, which accelerate both localized and average corrosion rates of carbon steel.
The formation of microbe films can also reduce the corrosion rate of 25 steel through inhibition of oxygen diffusion and depletion of oxygen in the electrolyte and metal/solution interface. The research on the single effect of microbe on the corrosion behaviors of metal is insufficient up to now. In this work, the single effect of microbe on the corrosion behaviors of 25 steel was studied by comparing the corrosion behaviors of the carbon steel in natural seawater and in serile seawater. The results show that in most of mmerging periods, the bacterial activity at the interface accelerated the average corrosion rate of 25 steel. When the corrosion time was 365 d, the average corrosion rate of 25 steel immersed in natural seawater was 2.6 times that in sterile seawater. However, when the corrosion time was 28 d, the biofilms inhibited the corrosion of 25 steel. The species and contents of microbes significantly influenced the corrosion behavior of 25 steel. The microbes in the corrosion product mainly consisted of pseudomonas, vibrio, crenothrixandleptothrix, thiobacillus and sulfate–reducing bacteria. When the corrosion time was 365 d, flavobacterium also existed in the corrosion product. The contents of aerobe, facultative anaerobe and anaerobe reached the maximum vale when the corrosion time was 28, 91 and 184 d, respectively. The regular change of the contents of microbes with the immerging time led to the different microbe corrosion mechanisms of 25 steel.

Key words:  25 steel      seawater      mcrobe      corrosion     
Received:  09 September 2009     
Fund: 

Supported by National Natural Science Foundation of China (No.50761004), Natural Science Foundation of Hainan Province (Nos.807011 and 80630), 2005 and 2009 Scientific Research Project of Hainan University (Nos.Kyjj0536 and hd09xm77)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00597     OR     https://www.ams.org.cn/EN/Y2010/V46/I6/755

[1] Little B, Wagner P. Mater Performance, 1997; 36(6): 40
[2] Little B, Wagner P. J Adhes, 1986; 20: 187
[3] Li X B, Wang W, Wang J, Liu W Y. Corros Sci Prot Technol, 2002; 14: 218
(李相波, 王伟, 王佳, 刘五一. 腐蚀科学与防护技术, 2002; 14: 218)
[4] Jung H G, Yoo J Y, Woo J S. ISIJ Int, 2003; 43: 1603
[5] Mathiyarasu J, Palaniswamy N, Muralidharan V S. Corros Rev, 2000; 18: 65
[6] Walsh D, Pope D, Danford M, Huff T. JOM, 1993; 45(9): 22
[7] Liu D Y, Wei K J, Li W J, Cao F Y. J Chin Soc Corros Prot, 2003; 23: 211
(刘大扬, 魏开金, 李文军, 曹付炎. 中国腐蚀与防护学报, 2003; 23: 211)
[8] Busalmen J P, V´azquez M, de S´anchez S R. Electrochim Acta, 2002; 47: 1857
[9] de Damborenea J J, Crist´obal A B, Arenas M A, L´opez V, Conde A. Mater Lett, 2007; 61: 821
[10] Crist´obal A B, Arenas M A, Conde A, de Damborenea J. Electrochim Acta, 2006; 52: 546
[11] Sand W. Int Biodeterior Biodegrad, 1997; 40: 183
[12] Mansfeld F, Little B. Corros Sci, 1991; 32: 247
[13] Buchanan R E, Gibbons N E, Bergey’s. Manual of Determinative Bacteriology. 8th Ed., Baltimore, Maryland: The Williams and Wilkins Company, 1974: 7
[14] Sreekumari K R, Nandakumar K, Takao K, Kikuchi Y. ISIJ Int, 2003; 43: 1799
[15] Little B, Wagner P, Mansfeld F. Electrochim Acta, 1992; 37: 2185
[16] Ponmariappan S, Maruthamuthu S, Palaniswamy N, Palaniappan R. Corros Rev, 2004; 22: 307

[1] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[2] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[3] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[4] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[5] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[6] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[7] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[8] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[9] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[10] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[11] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[12] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[13] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[14] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[15] SONG Jialiang, JIANG Zixue, YI Pan, CHEN Junhang, LI Zhaoliang, LUO Hong, DONG Chaofang, XIAO Kui. Corrosion Behavior and Product Evolution of Steel for High-Speed Railway Bogie G390NH in Simulated Marine and Industrial Atmospheric Environment[J]. 金属学报, 2023, 59(11): 1487-1498.
No Suggested Reading articles found!