Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (6): 695-700    DOI: 10.3724/SP.J.1037.2009.00782
论文 Current Issue | Archive | Adv Search |
MODELLING AND SIMULATION OF THE MICROSTRUC- TURE FORMATION IN A STRIP CAST Al–Pb ALLOY
LI Haili1;ZHAO Jiuzhou2
1.Weaponry Science Technology Research Center; Shenyang Ligong University; Shenyang 110159
2.Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

LI Haili ZHAO Jiuzhou. MODELLING AND SIMULATION OF THE MICROSTRUC- TURE FORMATION IN A STRIP CAST Al–Pb ALLOY. Acta Metall Sin, 2010, 46(6): 695-700.

Download:  PDF(582KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

When a single–phase liquid is cooled into the miscibility gap, it decomposes into two liquid phases. Generally the liquid–liquid phase transformation causes the formation of a solidification microstructure with serious phase segregation. Many efforts have been made to use the liquid–liquid demixing phenomenon for the production of the finely dispersed metal–metal composite materials. It is demonstrated that the only effective method of preventing the formation of the microstructure with heavy phase segregation in monotectic alloys is using the rapid solidification processing techniques. Strip casting may have great potentials in the manufacturing of the bulk materials of this kind of alloys. In this paper, a model was developed to describe the microstructure formation in a strip cast monotectic alloy based on the population dynamic method. The model takes into account the concurrent actions of the nucleation, diffusional growth and motions of the minority phase droplets. The model was nmerically solved together with the controlling equations for the heat transfer, mass transport and momentum transfer to studthe microstructure development in the strip cast Al–Pb alloys. The effects of alloy composition, solidification velocity and melting temperature on the microstructure formation were investigated. The results indicate that with the increase of the solidification velocity, the nucleation position of the minority phase droplets moves towards the solidification interface, the nucleation rate and number density of droplets increase and the average droplet size decreases. All these are favorable for the formation of a well dispersed microstructure. With the increase of the Pb content,  the nucleation position of the minority phase droplets moves away form the solidification interface, the nucleation rate decreases, and the average droplet size increases. These are against the formation of a well dispersed microstructure. With the increase of the melting temperature, the nucleation rate and number density of droplets increase and the average droplet size decreases. These are favorable for the formation of a well dispersed microstructure. But the velocity of the minority phase droplets decreases with the increase of the melting temperature. When the velocity of droplets is negative, samples can not obtain steady state solidification and result in the formation of a microstructure with massive segregation.

Key words:  monotectic alloy      liquid-liquid transformation      solidification      modeling and simulation     
Received:  24 November 2009     
Fund: 

Supported by National Natural Science Foundation of China (Nos.50771097 and u0837601)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00782     OR     https://www.ams.org.cn/EN/Y2010/V46/I6/695

[1] Pratt G C. Int Met Rev, 1973; 18: 62
[2] Zhao J Z, Kolbe M, Li H L, Gao J R, Ratke L. Metall Mater Trans, 2007; 38A: 1162
[3] Ozawa S, Motegi T. Mater Lett, 2004; 58: 2548
[4] Cao C D, Wei B B. J Mater Sci Technol, 2002; 18: 73
[5] Fujii H, Kitaguchi H, Kumakura H, Togano K. J Mater Sci, 1995; 30: 3429
[6] Cui H B, Guo J J, Su Y Q, Wu S P, Li X Z, Fu H Z. Acta Metall Sin, 2007; 43: 907
(崔红保, 郭景杰, 苏彦庆, 吴士平, 李新中, 傅恒志. 金属学报, 2007; 43: 907)
[7] Carlberg T, Fredriksson H. Metal Trans, 1980; 11A: 1665
[8] Huang Z. Scr Metall, 1991; 24: 149
[9] Kamio A, Kumai S, Tezuka H. Mater Sci Eng, 1991; A146: 105
[10] Prinz B, Romero A, Ratke L. J Mater Sci, 1995; 30: 4715
[11] He J, Zhao J Z, Li H L, Zhang X F, Zhang Q X. Metall Mater Trans, 2008; 39A: 1174
[12] Wecker J, Hehnolt R, Schulta L, Samwer K. Appl Phys Lett, 1993; 52: 1985
[13] Kolbe M, Brillo J, Egry I. Microgravity Sci Technol, 2006; 18: 174
[14] Li H L. PhD Thesis, Institute of Metal Research, Chinese Academy of ciences, Shenyang, 2009
(李海丽. 中国科学院金属研究所博士学位论文, 沈阳, 2009)
[15] Granasy L, Ratke L. Scr Mater, 1993; 28: 1329
[16] Li H L, Zhao J Z, Zhang Q X, He J. Metall Mater Trans, 2008; 39A: 3308
[17] Rogers J R, Davis R H. Metall Trans, 1990; 2A: 59
[18] Thieringer W K. Acta Metall, 1985; 33: 1973
[19] Tao W Q. Numerical Heat Transfer. Xi’an: Xi’an Jiaotong University Press, 1988: 349
(陶文铨. 数值传热学. 西安: 西安交通大学出版社, 1988: 349)
[20] Patankar S V, Translated by Zhang Z. Numerical Heat Transfer and Fluid Flow. Beijing: Science Press, 1984: 27
(Patankar S V, 张 政译. 传热与流体流动计算. 北京: 科学出版社, 1984: 27)
[21] Li H L, Zhao J Z. Appl Phys Lett, 2008; 92: 241902

[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[4] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[5] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[6] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[7] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[8] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[9] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[10] WU Guohua, TONG Xin, JIANG Rui, DING Wenjiang. Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect[J]. 金属学报, 2022, 58(4): 385-399.
[11] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[12] ZHANG Lei, SHI Tao, HUANG Huogen, ZHANG Pei, ZHANG Pengguo, WU Min, FA Tao. Phase Separation and Solidification Sequence of Uranium-Based Amorphous Composites[J]. 金属学报, 2022, 58(2): 225-230.
[13] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[14] CAO Jianghai, HOU Zibing, GUO Zhongao, GUO Dongwei, TANG Ping. Effect of Superheat on Integral Morphology Characteristics of Solidification Structure and Permeability in Bearing Steel Billet[J]. 金属学报, 2021, 57(5): 586-594.
[15] ZHANG Zhuang, LI Haiyang, ZHOU Lei, LIU Huasong, TANG Haiyan, ZHANG Jiaquan. As-Cast Spot Segregation of Gear Steel and Its Evolution in the Rolled Products[J]. 金属学报, 2021, 57(10): 1281-1290.
No Suggested Reading articles found!