Please wait a minute...
Acta Metall Sin  1988, Vol. 24 Issue (2): 171-175    DOI:
Current Issue | Archive | Adv Search |
RELATIONSHIP BETWEEN CRYSTALLIZATION TEMPERATURE AND PRE-EXISTING NUCLEI IN THE AMORPHOUS Ni-P ALLOY
LU Ke Institute of Metal Research;Academia Sinica;Shenyang;WANG Jingtang Institute of Metal Research; Academia Sinica; Shenyang
Cite this article: 

LU Ke Institute of Metal Research;Academia Sinica;Shenyang;WANG Jingtang Institute of Metal Research; Academia Sinica; Shenyang. RELATIONSHIP BETWEEN CRYSTALLIZATION TEMPERATURE AND PRE-EXISTING NUCLEI IN THE AMORPHOUS Ni-P ALLOY. Acta Metall Sin, 1988, 24(2): 171-175.

Download:  PDF(834KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  According to the classical theory of phase transformation, a relation-ship between crystallization temperature (the peak temperature in the exothermiccurve of crystallization, T_p) and the density of pre-existing nuclei in the sample,N_0, was derived in the crystallization process dominated by growth of nuclei: T_P~2exp(-E_g/RT_P)=L/N_0~(1/3)where Eg is the activation energy for growth of nuclei, L is a constant and R isthe gas constant. Different number of preexisting nuclei was formed by pre-anneal-ing treatment of a Ni-P glass at a temperature about 50K lower than crystalliza-tion temperature for different time. By means of a DSC determination, the crystal-lization temperature of as-quenched and the preannealed samples were obtained andit was found that the new equation successfully agrees with the experimental results.And the growth rate of crystal nuclei in the Ni-P glass can be estimated from therelationship. The onset temperature, T_x, decreases and the difference between T_p and T_x,△T_(px)=T_p-T_x, increases with the increase of annealing time.
Key words:  Ni-P alloy      amorphous alloy      crystallization temperature      pre-existing nuclei      pre-anneal treatment     
Received:  18 February 1988     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1988/V24/I2/171

1 Greer A L. Acta Metall. 1982; 30: 171
2 Greer A L, Drehman A J. Acta Metall, 1984; 32: 323
3 Kiminami C S, Sahm P R. Acta Metall, 1986; 34: 2129
4 Baricco M, Battezzati L, Marino F, Riontino G. In: Steeb S, Warlimont H eds. Proc 5th Int Conf on Rapidly Quenched Metals, 1985: 239
5 Christian J W. The Theory of Transformation in Metals and Alloys, London: Pergamon, 1965
6 Henderson D W. J Non-Cryst Solids. 1979; 30: 301
7 Kelton K F, Greer A L, Thompson C V. J Chem Phys, 1983: 79: 6261
8 Lu Ke (卢柯), Wang Jingtang (王景唐). J Mater Sci, to be Published
9 Lu Ke (卢柯), Wang Jingtang (王景唐). Scr Metall, 1987; 21: 1185--1188#
[1] LIU Shuaishuai, HOU Chaonan, WANG Engang, JIA Peng. Plastic Rheological Behaviors of Zr61Cu25Al12Ti2 and Zr52.5Cu17.9Ni14.6Al10Ti5 Amorphous Alloys in the Supercooled Liquid Region[J]. 金属学报, 2022, 58(6): 807-815.
[2] LI Jinfu, LI Wei. Structure and Glass-Forming Ability of Al-Based Amorphous Alloys[J]. 金属学报, 2022, 58(4): 457-472.
[3] ZHANG Jinyong, ZHAO Congcong, WU Yijin, CHEN Changjiu, CHEN Zheng, SHEN Baolong. Structural Characteristic and Crystallization Behavior of the (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x High-Entropy-Amorphous Alloy Ribbons[J]. 金属学报, 2022, 58(2): 215-224.
[4] HAN Luhui, KE Haibo, ZHANG Pei, SANG Ge, HUANG Huogen. Kinetic Crystallization Behavior of Amorphous U60Fe27.5Al12.5 Alloy[J]. 金属学报, 2022, 58(10): 1316-1324.
[5] LIU Riping, MA Mingzhen, ZHANG Xinyu. New Development of Research on Casting of Bulk Amorphous Alloys[J]. 金属学报, 2021, 57(4): 515-528.
[6] HU Xiang, GE Jiacheng, LIU Sinan, FU Shu, WU Zhenduo, FENG Tao, LIU Dong, WANG Xunli, LAN Si. Combustion Mechanism of Fe-Nb-B-Y Amorphous Alloys with an Anomalous Exothermic Phenomenon[J]. 金属学报, 2021, 57(4): 542-552.
[7] ZHU Min, OUYANG Liuzhang. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. 金属学报, 2021, 57(11): 1416-1428.
[8] HUANG Huogen, ZHANG Pengguo, ZHANG Pei, WANG Qinguo. Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems[J]. 金属学报, 2020, 56(6): 849-854.
[9] GENG Yaoxiang, WANG Yingmin. Local Structure-Property Correlation of Fe-Based Amorphous Alloys: Based on Minor Alloying Research[J]. 金属学报, 2020, 56(11): 1558-1568.
[10] XU Xiuyue, LI Yanhui, ZHANG Wei. Fabrication of Nanoporous PtRuFe by Dealloying Amorphous Fe(Pt, Ru)B Ribbons and Their Methanol Electrocatalytic Properties[J]. 金属学报, 2020, 56(10): 1393-1400.
[11] JIN Chenri, YANG Suyuan, DENG Xueyuan, WANG Yangwei, CHENG Xingwang. Effect of Nano-Crystallization on Dynamic Compressive Property of Zr-Based Amorphous Alloy[J]. 金属学报, 2019, 55(12): 1561-1568.
[12] Hongyang XU,Haibo KE,Huogen HUANG,Pei ZHANG,Pengguo ZHANG,Tianwei LIU. Nanoindentation Creep Behavior of U65Fe30Al5 Amorphous Alloy[J]. 金属学报, 2017, 53(7): 817-823.
[13] Dianguo MA,Yingmin WANG,Kunio YUBUTA,Yanhui LI,Wei ZHANG. Effect of Co Content on the Structure and Magnetic Properties of Melt-Spun Fe55-xCoxPt15B30 Alloys[J]. 金属学报, 2017, 53(5): 609-614.
[14] Huogen HUANG,Hongyang XU,Pengguo ZHANG,Yingmin WANG,Haibo KE,Pei ZHANG,Tianwei LIU. U-Cr Binary Alloys with Anomalous Glass-Forming Ability[J]. 金属学报, 2017, 53(2): 233-238.
[15] Chao PENG, Yuan LI, Yonghe DENG, Ping PENG. Atomistic Simulation for Local Atomic Structures of Amorphous Ni-P Alloys with Near-Eutectic Compositions[J]. 金属学报, 2017, 53(12): 1659-1668.
No Suggested Reading articles found!