Please wait a minute...
Acta Metall Sin  1991, Vol. 27 Issue (1): 89-93    DOI:
Current Issue | Archive | Adv Search |
RADIAL DISTRIBUTION FUNCTION OF MOLTEN LiF-KCl SOLUTION
GUO Chuntai;CUI Mingji;LI Jie;TANG Dingxiang Changchun Institute of Applied Chemistry; Academia Sinica; XU Chi;CHEN Nianyi Shanghai Institute of Metallurgy; Academia Sinica
Cite this article: 

GUO Chuntai;CUI Mingji;LI Jie;TANG Dingxiang Changchun Institute of Applied Chemistry; Academia Sinica; XU Chi;CHEN Nianyi Shanghai Institute of Metallurgy; Academia Sinica. RADIAL DISTRIBUTION FUNCTION OF MOLTEN LiF-KCl SOLUTION. Acta Metall Sin, 1991, 27(1): 89-93.

Download:  PDF(410KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Radial distribution function of molten solution of LiF-KCl reci-procal system has been obtained by means of X-ray scattering and Monte Carlocomputerized simulation, respectively. It is shown that a more compact cluster tendsto form among Li~(+) and F~(-) ions with small size while the bonding of K~(+) andCl~(-) ions with large-size would be relatively relaxed in LiF-KCl melt, i. e. "larger-larger and smaller-smaller" effect.
Key words:  LiF      KCl      radial distribution function     
Received:  18 January 1991     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1991/V27/I1/89

1 Inman D, Lovering D C. Ionic Liquids, New York: Plenum, 1981; 27--56
2 Woodcock L V, Singer K. Trans Faraday Soc, 1971; 67: 12
3 Larsen B, Foriand T. Mol Phys. 1973; 26; 1521
4 Sangster M J L, Dixon M. Adv Phys. 1976; 25: 247
5 Takagi R, Ohno H, Furukawa K. J Chem Soc Faraday Trans I, 1979; 75: 1477
6 Vaslow F, Narten A H. J Chem Phys, 1973; 59: 4949
7 Ohno H, Yorokl M. Futukawa K, Takagi Y, Nakamura T. J Chem Soc Faraday Trans I. 1978; 74: 1861
8 Zarzycki J. J Phys Radium, 1958; 19: 13
[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[3] GUO Haohan, YANG Jie, LIU Fang, LU Rongsheng. Constraint Related Fatigue Crack Initiation Life of GH4169 Superalloy[J]. 金属学报, 2022, 58(12): 1633-1644.
[4] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
[5] HE Siliang, ZHAO Yunsong, LU Fan, ZHANG Jian, LI Longfei, FENG Qiang. Effects of Hot Isostatic Pressure on Microdefects and Stress Rupture Life of Second-Generation Nickel-Based Single Crystal Superalloy in As-Cast and As-Solid-Solution States[J]. 金属学报, 2020, 56(9): 1195-1205.
[6] SUN Feilong, GENG Ke, YU Feng, LUO Haiwen. Relationship of Inclusions and Rolling Contact Fatigue Life for Ultra-Clean Bearing Steel[J]. 金属学报, 2020, 56(5): 693-703.
[7] ZHANG Zhefeng,SHAO Chenwei,WANG Bin,YANG Haokun,DONG Fuyuan,LIU Rui,ZHANG Zhenjun,ZHANG Peng. Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels[J]. 金属学报, 2020, 56(4): 476-486.
[8] Zhengkai WU, Shengchuan WU, Jie ZHANG, Zhe SONG, Yanan HU, Guozheng KANG, Haiou ZHANG. Defect Induced Fatigue Behaviors of Selective Laser Melted Ti-6Al-4V via Synchrotron Radiation X-Ray Tomography[J]. 金属学报, 2019, 55(7): 811-820.
[9] Wenshu TANG,Junfeng XIAO,Yongjun LI,Jiong ZHANG,Sifeng GAO,Qing NAN. Effect of Re-Heat Rejuvenation Treatment on γ′ Microstructure of Directionally SolidifiedSuperalloy Damaged by Creep[J]. 金属学报, 2019, 55(5): 601-610.
[10] ZHANG Xiaochen, MENG Weiying, ZOU Defang, ZHOU Peng, SHI Huaitao. Effect of Pre-Cyclic Stress on Fatigue Crack Propagation Behavior of Key Structural Al Alloy Materials Used in High Speed Trains[J]. 金属学报, 2019, 55(10): 1243-1250.
[11] Zhe SONG, Shengchuan WU, Yanan HU, Guozheng KANG, Yanan FU, Tiqiao XIAO. The Influence of Metallurgical Pores on Fatigue Behaviors of Fusion Welded AA7020 Joints[J]. 金属学报, 2018, 54(8): 1131-1140.
[12] Yun XUE,Xue YANG,Yongde YAN,Milin ZHANG,Debin JI,Enyu LI,Wei HAN. ELECTROLYSIS EXTRACTION OF NEODYMIUM FROM LiCl-KCl-AlCl3-Nd2O3 MELTS WITHTHE ASSISTANCE OF AlCl3[J]. 金属学报, 2016, 52(7): 883-889.
[13] CHE Xin, LIANG Xingkui, CHEN Lili, CHEN Lijia, LI Feng. MICROSTRUCTURES AND LOW-CYCLE FATIGUE BEHAVIOR OF Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) ALLOY[J]. 金属学报, 2014, 50(9): 1046-1054.
[14] YU Zhuhuan, LIU Lin. EFFECT OF C ON THE RUPTURE PROPERTIES OF SINGLE CRYSTAL SUPERALLOYS[J]. 金属学报, 2014, 50(7): 854-862.
[15] YU Huichen, DONG Chengli, JIAO Zehui, KONG Fantao, CHEN Yuyong, SU Yongjun. HIGH TEMPERATURE CREEP AND FATIGUE BEHAVIOR AND LIFE PREDICTION METHOD  OF A TiAl ALLOY[J]. 金属学报, 2013, 49(11): 1311-1317.
No Suggested Reading articles found!