Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (11): 1311-1317    DOI: 10.3724/SP.J.1037.2013.00434
Current Issue | Archive | Adv Search |
HIGH TEMPERATURE CREEP AND FATIGUE BEHAVIOR AND LIFE PREDICTION METHOD  OF A TiAl ALLOY
YU Huichen 1), DONG Chengli 1), JIAO Zehui1), KONG Fantao 2), CHEN Yuyong 2), SU Yongjun2)
1) Beijing Key Laboratory of Aeronautical Materials Testing and Evaluation, Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095
2) National Key Laboratory of Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001
Cite this article: 

YU Huichen, DONG Chengli, JIAO Zehui, KONG Fantao, CHEN Yuyong, SU Yongjun. HIGH TEMPERATURE CREEP AND FATIGUE BEHAVIOR AND LIFE PREDICTION METHOD  OF A TiAl ALLOY. Acta Metall Sin, 2013, 49(11): 1311-1317.

Download:  PDF(804KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Creep (at 700℃) and low cycle fatigue (at 700 and 750℃) tests of Ti-43Al-9V-Y alloy with duplex (DP) and fully lamellar (FL) microstructures are carried out to study the creep, fatigue deformation and life prediction. Firstly, Omega method is employed to characterize the creep deformation and to predict the rupture life. Secondly, the proposed fatigue life model based on walker strain is employed to predict the fatigue life for these two types of TiAl alloy. The results show that: (1) high temperature creep curves of the material of both DP and FL microstructure contain steady and accelerated creep stages other than initial creep stage, and Omega method is able to characterize the creep deformation of TiAl alloy with DP and FL microstructure; (2) the rupture time of the material of FL microstructure is longer than that of DP microstructure, and the predicted rupture time by Omega method agrees well with the test data; (3) the fatigue life of DP is longer than that of FL under the same test condition, and the predicted fatigue life is well located in the scatter band of 3 of the test fatigue life.

Key words:  Duplex      fully lamellar      creep, low cycle fatigue      life prediction     
Received:  23 July 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00434     OR     https://www.ams.org.cn/EN/Y2013/V49/I11/1311

[1] Ding X F, Lin J P, Zhang L Q, Su Y Q, Chen G L.  Acta Mater, 2012; 60: 498

[2] Henaff G, Gloanec AL.  Intermetallics, 2005; 13: 543
[3] Lin J P, Xu X J, Wang Y L, Gao J F, Chen G L.  Intermetallics, 2007; 15: 668
[4] Kong F T, Chen Y Y, Tian J, Chen Z Y.  Mater Sci Technol, 2003; 11: 441
(孔凡涛, 陈玉勇, 田竞, 陈子勇. 材料科学与工艺, 2003; 11: 441)
[5] Wang Y H, Lin J P, He Y H.  Intermetallics, 2008; 16: 215
[6] Chen G Q, Zhang B G, Liu W, Feng J C.  Intermetallics, 2011; 19: 1857
[7] Zhu H L, Seo D Y, Maruyama K, Au P.  Mater Sci Eng, 2008; A483-484: 533
[8] Chen Y Y, Niu H Z, Kong F T, Xiao S L.  Intermetallics, 2011; 19: 1405
[9] Kassner M E, Perez-Prado M T.  Prog Mater Sci, 2000; 45: 102
[10] Monkman F C, Grant N J.  Proc ASTM, 1956; 56: 593
[11] Nagode A, Kosec L, Ule B.   Eng Fail Anal, 2011; 18: 61
[12] Larson F R, Miller J.  Trans ASME, 1952; 74: 765
[13] Orr R L, Sherby O D, Dorn J E.  Trans ASM, 1954; 46: 113
[14] Manson S S, Brown W F.  Proc ASTM, 1953; 53: 683
[15] Evans R, Wilshire B.  Creep of Metals and Alloys. London: Institute of Metals, 1985: 1
[16] Prager M.  J Pres Ves Technol, 2000; 122: 273
[17] Goodman J.  Mechanics Applied to Engineering. London: Longmans, Green and Co., 1919: 631
[18] Smith J O.  The Effect of Range of Stress on the Fatigue Strength of Metals.Bulletin No.334, Urbana, IL: Universityof Illinois, Engineering Experiment Station, 1942: 13
[19] Gerber H.  Zeitschrift Bayerischen Architeckten Ingenieur- Vereins, 1874; 3: 359
[20] Morrow J D.  Fatigue Design Handbook-Advances in Engineering. Warrendate:Society of Automo-tive Engineers, 1968: 21
[21] Soderberg C R.  Trans ASME, 1939; 52: 13
[22] Walker K.  Effects of Environment and Complex Loading History on Fatigue Life.Philadelphia: American Society for Testing and Materials, 1970: 1
[23] Chen Y Y, Kong F T, Han J C, Chen Z Y, Tian J.  Intermetallics, 2005; 13: 263
[24] Yeom J T, Kim J Y, Na Y S, Park N K.  Met Mater Int, 2003; 9: 555
[25] Ye D Y, Wang Z L.  Int J Fatigue, 2001; 23: 679
[26] Mediratta S R, Ramaswamy V, Rao P R.  Int J Fatigue, 1988; 10: 13
[1] CHEN Guo, WANG Xinbo, ZHANG Renxiao, MA Chengyue, YANG Haifeng, ZHOU Li, ZHAO Yunqiang. Effect of Tool Rotation Speed on Microstructure and Properties of Friction Stir Processed 2507 Duplex Stainless Steel[J]. 金属学报, 2021, 57(6): 725-735.
[2] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[3] DENG Yahui, YANG Yinhui, PU Chaobo, NI Ke, PAN Xiaoyu. Effect of Mn Addition on High Temperature Tensile Behavior of 23%Cr Low Nickel Type Duplex Stainless Steel[J]. 金属学报, 2020, 56(7): 949-959.
[4] WANG Guiqin,WANG Qin,CHE Honglong,LI Yajun,LEI Mingkai. Effects of Silicon on the Microstructure and Propertiesof Cast Duplex Stainless Steel with Ultra-HighChromium and High Carbon[J]. 金属学报, 2020, 56(3): 278-290.
[5] Yahui DENG,Yinhui YANG,Jianchun CAO,Hao QIAN. Research on Dynamic Recrystallization Behavior of 23Cr-2.2Ni-6.3Mn-0.26N Low Nickel TypeDuplex Stainless Steel[J]. 金属学报, 2019, 55(4): 445-456.
[6] Miao JIN, Wenquan LI, Shuo HAO, Ruixue MEI, Na LI, Lei CHEN. Effect of Solution Temperature on Tensile Deformation Behavior of Mn-N Bearing Duplex Stainless Steel[J]. 金属学报, 2019, 55(4): 436-444.
[7] CHEN Lei , HAO Shuo , MEI Ruixue , JIA Wei , LI Wenquan , GUO Baofeng . Intrinsic Increment of Plasticity Induced by TRIP and Its Dependence on the Annealing Temperature in a Lean Duplex Stainless Steel[J]. 金属学报, 2019, 55(11): 1359-1366.
[8] ZHANG Xiaochen, MENG Weiying, ZOU Defang, ZHOU Peng, SHI Huaitao. Effect of Pre-Cyclic Stress on Fatigue Crack Propagation Behavior of Key Structural Al Alloy Materials Used in High Speed Trains[J]. 金属学报, 2019, 55(10): 1243-1250.
[9] Yusen SU, Yinhui YANG, Jianchun CAO, Yuliang BAI. Research on Hot Working Behavior of Low-NickelDuplex Stainless Steel 2101[J]. 金属学报, 2018, 54(4): 485-493.
[10] Hai ZHANG,Shilei LI,Gang LIU,Yanli WANG. Effects of Hot Working on the Microstructure and Thermal Ageing Impact Fracture Behaviors of Z3CN20-09MDuplex Stainless Steel[J]. 金属学报, 2017, 53(5): 531-538.
[11] Yanqi YIN,Cuilan WU,Pan XIE,Kai ZHU,Songli TIAN,Mei HAN,Jianghua CHEN. AN ULTRAFINE GRAINED DUPLEX Mn12Ni2MoTi(Al) STEEL FABRICATED BY COLD ROLLINGAND ANNEALING[J]. 金属学报, 2016, 52(12): 1527-1535.
[12] Yulai CHEN,Zhaoyin LUO,Jingyuan LI. EFFECT OF SOLUTION TEMPERATURE ON MICRO- STRUCTURE AND PITTING CORROSION RESISTANCE OF S32760 DUPLEX STAINLESS STEEL[J]. 金属学报, 2015, 51(9): 1085-1091.
[13] DAI Fuzhi, ZHANG Wenzheng. AN INVESTIGATION ON THE EQUILIBRIUM MOR- PHOLOGY AND INTERFACIAL STRUCTURES OF PRICIPITATES IN DUPLEX STAINLESS STEEL BY ATOMISTIC SIMULATION[J]. 金属学报, 2014, 50(9): 1123-1127.
[14] CHEN Yulai, ZHANG Tairan, WANG Yide, LI Jingyuan. EFFECTS OF O, N AND Ni CONTENTS ON HOT PLASTICITY OF 0Cr25Ni7Mo4N DUPLEX STAINLESS STEEL[J]. 金属学报, 2014, 50(8): 905-912.
[15] XIANG Hongliang, GUO Peipei, LIU Dong. MICROSTRUCTURE AND ANTIBACTERIAL PROPERTIES OF Ag-BEARING DUPLEX STAINLESS STEEL[J]. 金属学报, 2014, 50(10): 1210-1216.
No Suggested Reading articles found!