Please wait a minute...
Acta Metall Sin  1995, Vol. 31 Issue (3): 115-119    DOI:
Current Issue | Archive | Adv Search |
THERMODYNAMICS OF SHEAR MECHANISM OF BAINITIC FORMATION IN CARBON-DEPLETED REGIONS OF AUSTENITE IN Fe-C ALLOYS
WU Xiaolei; ZHANG Xiyan; KANG Mokuang; YANG Yanqing (Northwestern Polytechnical University; Xi'an 710072)
Cite this article: 

WU Xiaolei; ZHANG Xiyan; KANG Mokuang; YANG Yanqing (Northwestern Polytechnical University; Xi'an 710072). THERMODYNAMICS OF SHEAR MECHANISM OF BAINITIC FORMATION IN CARBON-DEPLETED REGIONS OF AUSTENITE IN Fe-C ALLOYS. Acta Metall Sin, 1995, 31(3): 115-119.

Download:  PDF(325KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Thermodynamic analysis for shear formation of bainitic ferrite in carbon-depleted regions of austenite is conducted. The driving force of bainitic formation in carbon-depleted region increases with the reduction of carbon concentration in this region and can overcome the energy resistance. The critical driving force (absolute value) at Bs temperature is 470─1200 J/mol. The freshly-formed bainitic ferrite is with partial supersaturation of carbon, which increases with decreasing the reaction temperature. Finally,it is concluded that the shear mechanism of bainitic formation in carbon-depleted region is thermodynamically feasible within the whole temperature range of bainitic reaction.
Key words:  bainite      carbon-depleted region      shear transformation      thermodynamic     
Received:  18 March 1995     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1995/V31/I3/115

1冯华,康沫狂,李春信材料科学进展,1988;2:122武小雷,张喜燕,康沫汪.金属热处理学报,1994;15(3):123KangMK,YangYQetalMetallTrans,1994:25:inpress4张喜燕,武小雷,康沫狂等.金属学报,1994,30:A3275KangMK,SunJL.YangQM.MetallTrans,1990;21:8536AgrenJ.MetallTrans,1979;10:7777ShifletGJ,BradleyJR,AaronsonHLMetallTrans,1978;9:9998XieZY,KangMK,WuXL.Actametallmater,1994;42:18259AckertRL,ParrJG,JISI.1971:209:91210杨全民,康沫狂,金属学报,1989:25:25711ChristianJW,EdmondsDV.PhaseTransformationinFerrousAllovs.MarderARandGoldsteinJIeds.AIME.Warrendale,PA.1983:29312武小雷,张喜燕.康沫狂等.自然科学进展——国家重点实验室通讯.1994:4(6):257
[1] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[2] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[3] WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. 金属学报, 2023, 59(5): 679-692.
[4] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[5] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[6] ZHU Bin, YANG Lan, LIU Yong, ZHANG Yisheng. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation[J]. 金属学报, 2022, 58(2): 155-164.
[7] CHEN Wei, CHEN Hongcan, WANG Chenchong, XU Wei, LUO Qun, LI Qian, CHOU Kuochih. Effect of Dilatational Strain Energy of Fe-C-Ni System on Martensitic Transformation[J]. 金属学报, 2022, 58(2): 175-183.
[8] HUANGFU Hao, WANG Zilong, LIU Yongli, MENG Fanshun, SONG Jiupeng, QI Yang. A First Principles Investigation of W1 - x Ir x Alloys: Structural, Electronic, Mechanical, and Thermal Properties[J]. 金属学报, 2022, 58(2): 231-240.
[9] ZHU Dongming, HE Jiangli, SHI Genhao, WANG Qingfeng. Effect of Welding Heat Input on Microstructure and Impact Toughness of the Simulated CGHAZ in Q500qE Steel[J]. 金属学报, 2022, 58(12): 1581-1588.
[10] HU Biao, ZHANG Huaqing, ZHANG Jin, YANG Mingjun, DU Yong, ZHAO Dongdong. Progress in Interfacial Thermodynamics and Grain Boundary Complexion Diagram[J]. 金属学报, 2021, 57(9): 1199-1214.
[11] FENG Miaomiao, ZHANG Hongwei, SHAO Jingxia, LI Tie, LEI Hong, WANG Qiang. Prediction of Macrosegregation of Fe-C Peritectic Alloy Ingot Through Coupling with Thermodynamic Phase Transformation Path[J]. 金属学报, 2021, 57(8): 1057-1072.
[12] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[13] LIU Feng, WANG Tianle. Precipitation Modeling via the Synergy of Thermodynamics and Kinetics[J]. 金属学报, 2021, 57(1): 55-70.
[14] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[15] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
No Suggested Reading articles found!