|
|
High-Temperature Creep Behavior of Selective Laser Melting Manufactured Al-Si-Fe-Mn-Ni Alloy |
HAN Ying1, WU Yuhang1, ZHAO Chunlu2, ZHANG Jingshi1, LI Zhenmin2, RAN Xu1( ) |
1 Key Laboratory of Advanced Structural Materials (Ministry of Education), School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China 2 Beijing Baohang Advanced Materials Co. Ltd., Beijing 101300, China |
|
Cite this article:
HAN Ying, WU Yuhang, ZHAO Chunlu, ZHANG Jingshi, LI Zhenmin, RAN Xu. High-Temperature Creep Behavior of Selective Laser Melting Manufactured Al-Si-Fe-Mn-Ni Alloy. Acta Metall Sin, 2025, 61(1): 154-164.
|
Abstract The development of high-temperature creep-resistant Al alloys is essential for manufacturing aerospace and transportation equipment. Conventional creep-resistant Al alloys have several limitations, including high costs, complex heat treatment processes, and challenging processing requirements. Selective laser melting (SLM) technology enables the fabrication of metal materials with ultrafine microstructures and high concentrations of strengthening phases due to its rapid cooling rates, substantial temperature gradients, and unique thermal cycling. This capability provides a promising path for the development of next-generation creep-resistant Al alloys. In this study, a novel Al-9Si-3Fe-2Mn-Ni (mass fraction, %) alloy using the SLM technique was developed. This Al-Si alloy was engineered by controlling the diffusion of slow-diffusing elements and intermetallic compounds (IMCs) that strengthen the material. The high-temperature creep behavior of this alloy was evaluated through uniaxial tensile creep experiments conducted at varying deformation temperatures (300-400 oC) and applied stresses (33-132 MPa). The experimental results demonstrate that the alloy exhibits good creep performance under the experimental conditions. The stress exponent ranged from 6.4 to 13.6, showing a decreasing trend with increasing temperature. The creep deformation mechanism is known as dislocation creep. Below 350 oC, the continuous Al-Si eutectic network reduces the overall stress via load transfer, with IMCs strengthening the alloy via the Orowan mechanism. At 400 oC, the Al-Si eutectic structure fractures and dissolves, with the IMCs and dispersed Si phases providing the primary strengthening mechanism. Increased applied stress amplifies the dislocation slip systems within the alloy, intensifying the interactions between dislocations and precipitates, leading to destabilization and deformation and ultimately reducing creep life.
|
Received: 14 August 2024
|
|
Fund: Jilin Scientific and Technological Development Program(20220201106GX);National Natural Science Foundation of China(51974032);National Natural Science Foundation of China(52174355) |
Corresponding Authors:
RAN Xu, professor, Tel: 15526853785, E-mail: ranxu@ccut.edu.cn
|
1 |
Wang L, Liang X P, Liu B, et al. Stacking fault formation in perovskite Ti3AlC carbides in a TiAl based alloy during creep at 800 oC[J]. Scr. Mater., 2023, 222: 115034
|
2 |
Liu X Y, Pan Q L, Lu Z L, et al. Creep behavior of Al-Cu-Mg-Ag heat-resistant alloy at elevated temperature[J]. Acta Metall. Sin., 2011, 47: 53
|
|
刘晓艳, 潘清林, 陆智伦 等. Al-Cu-Mg-Ag耐热铝合金高温蠕变行为[J]. 金属学报, 2011, 47: 53
doi: 10.3724/SP.J.1037.2010.00369
|
3 |
Feng Q, Lu S, Li W D, et al. Recent progress in alloy design and creep mechanism of γ'-strengthened Co-based superalloys[J]. Acta Metall. Sin., 2023, 59: 1125
|
|
冯 强, 路 松, 李文道 等. γ'相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59: 1125
|
4 |
Ma Y, Langdon T G. Creep behavior of an Al-6061 metal matrix composite produced by liquid metallurgy processing[J]. Mater. Sci. Eng., 1997, A230: 183
|
5 |
Yang J X, Li J G, Wang M, et al. Effects of heat treatment process on the microstructure and properties of a new cast nickel-based superalloy[J]. Acta Metall. Sin., 2012, 48: 654
|
|
杨金侠, 李金国, 王 猛 等. 热处理工艺对一种新型铸造镍基高温合金的组织和性能影响[J]. 金属学报, 2012, 48: 654
doi: 10.3724/SP.J.1037.2012.00061
|
6 |
Cai C, Geng H F, Zhang Z. Temperature-dependent cyclic response and microstructure of AlSi10Mg(Cu) alloy[J]. Mater. Charact., 2018, 141: 148
|
7 |
Xiao Y K, Yang Q, Bian Z Y, et al. Microstructure, heat treatment and mechanical properties of TiB2/Al-7Si-Cu-Mg alloy fabricated by selective laser melting[J]. Mater. Sci. Eng., 2021, A809: 140951
|
8 |
Xue H, Yang C, De Geuser F, et al. Highly stable coherent nanoprecipitates via diffusion-dominated solute uptake and interstitial ordering[J]. Nat. Mater., 2023, 22: 434
|
9 |
Bai X R, Xie H N, Zhang X, et al. Heat-resistant super-dispersed oxide strengthened aluminium alloys[J]. Nat. Mater., 2024, 23: 747
|
10 |
Rong X D, Zhao D D, Chen X F, et al. Towards the work hardening and strain delocalization achieved via in-situ intragranular reinforcement in Al-CuO composite[J]. Acta Mater., 2023, 256: 119110
|
11 |
Cai X M, Zhang W, Fan Z Q, et al. Damage modes and response mechanisms of AlSi10Mg porous structures under different loading strain rates[J]. Acta Metall. Sin., 2024, 60: 857
doi: 10.11900/0412.1961.2023.00440
|
|
蔡宣明, 张 伟, 范志强 等. AlSi10Mg多孔结构在不同加载应变率下的损伤模式及响应机制[J]. 金属学报, 2024, 60: 857
doi: 10.11900/0412.1961.2023.00440
|
12 |
Gazizov M, Kaibyshev R. Effect of pre-straining on the aging behavior and mechanical properties of an Al-Cu-Mg-Ag alloy[J]. Mater. Sci. Eng., 2015, A625: 119
|
13 |
Gao J B, Li Z C, Liu J, et al. Current situation and prospect of computationally assisted design in high-performance additive manufactured aluminum alloys: A review[J]. Acta Metall. Sin., 2023, 59: 87
doi: 10.11900/0412.1961.2022.00430
|
|
高建宝, 李志诚, 刘 佳 等. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59: 87
doi: 10.11900/0412.1961.2022.00430
|
14 |
Yang T Y, Cui L, He D Y, et al. Enhancement of microstructure and mechanical property of AlSi10Mg-Er-Zr alloys fabricated by selective laser melting[J]. Acta Metall. Sin., 2022, 58: 1108
|
|
杨天野, 崔 丽, 贺定勇 等. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58: 1108
doi: 10.11900/0412.1961.2021.00085
|
15 |
Bahl S, Wu T, Michi R A, et al. An additively manufactured near-eutectic Al-Ce-Ni-Mn-Zr alloy with high creep resistance[J]. Acta Mater., 2024, 268: 119787
|
16 |
Griffiths S, Croteau J R, Rossell M D, et al. Coarsening- and creep resistance of precipitation-strengthened Al-Mg-Zr alloys processed by selective laser melting[J]. Acta Mater., 2020, 188: 192
doi: 10.1016/j.actamat.2020.02.008
|
17 |
Read N, Wang W, Essa K, et al. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development[J]. Mater. Des., 2015, 65: 417
|
18 |
Huang S, Guo S Q, Zhou B, et al. Microstructure and properties of AlSi7Mg alloy fabricated by selective laser melting[J]. China Foundry, 2021, 18: 416
doi: 10.1007/s41230-021-1004-z
|
19 |
Wu J, Wang X Q, Wang W, et al. Microstructure and strength of selectively laser melted AlSi10Mg[J]. Acta Mater., 2016, 117: 311
|
20 |
Cai Q, Fang C M, Lordan E, et al. A novel Al-Si-Ni-Fe near-eutectic alloy for elevated temperature applications[J]. Scr. Mater., 2023, 237: 115707
|
21 |
Jansen A M, Dunand D C. Creep of metals containing high volume fractions of unshearable dispersoids: II. Experiments in the Al Al2O3 system and comparison to models[J]. Acta Mater., 1997, 45: 4583
|
22 |
Knipling K E, Dunand D C. Creep resistance of cast and aged Al-0.1Zr and Al-0.1Zr-0.1Ti (at.%) alloys at 300-400 oC[J]. Scr. Mater., 2008, 59: 387
|
23 |
Guo S K, Ma Z L, Xia G H, et al. Pursuing ultrastrong and ductile medium entropy alloys via architecting nanoprecipitates-enhanced hierarchical heterostructure[J]. Acta Mater., 2024, 263: 119492
|
24 |
Dragone T L, Nix W D. Geometric factors affecting the internal stress distribution and high temperature creep rate of discontinuous fiber reinforced metals[J]. Acta Mater., 1990, 38: 1941
|
25 |
Attar H, Ehtemam-Haghighi S, Kent D, et al. Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: A review[J]. Int. J. Mach. Tool Manuf., 2018, 133: 85
|
26 |
Corby R N, Black P J. The structure of α-(AlFeSi) by anomalous-dispersion methods[J]. Acta Cryst., 1977, 33B: 3468
|
27 |
Boyd J D, Nicholson R B. The coarsening behaviour of θ″ and θ′ precipitates in two Al-Cu alloys[J]. Acta Metall., 1971, 19: 1379
|
28 |
Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549: 365
|
29 |
Mclean M. On the threshold stress for dislocation creep in particle strengthened alloys[J]. Acta Metall., 1985, 33: 545
|
30 |
Frost H J, Ashby M F. Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics[M]. Oxford: Pergamon Press, 1982: 166
|
31 |
Zhang M, Lewis R J, Gibeling J C. Mechanisms of creep deformation in a rapidly solidified Al-Fe-V-Si alloy[J]. Mater. Sci. Eng., 2021, A805: 140796
|
32 |
Park K T, Mohamed F A. Creep strengthening in a discontinuous SiC-Al composite[J]. Metall. Mater. Trans., 1995, 26A: 3119
|
33 |
Uzan N E, Shneck R, Yeheskel O, et al. High-temperature mechanical properties of AlSi10Mg specimens fabricated by additive manufacturing using selective laser melting technologies (AM-SLM)[J]. Addit. Manuf., 2018, 24: 257
|
34 |
Wakashima K, Moriyama T, Mori T. Steady-state creep of a particulate SiC/6061 Al composite[J]. Acta Mater., 2000, 48: 891
|
35 |
De Luca A, Seidman D N, Dunand D C. Mn and Mo additions to a dilute Al-Zr-Sc-Er-Si-based alloy to improve creep resistance through solid-solution- and precipitation-strengthening[J]. Acta Mater., 2020, 194: 60
|
36 |
Ringer S P, Yeung W, Muddle B C, et al. Precipitate stability in Al-Cu-Mg-Ag alloys aged at high temperatures[J]. Acta Metall. Mater., 1994, 42: 1715
|
37 |
Ng D S, Dunand D C. Aging- and creep-resistance of a cast hypoeutectic Al-6.9Ce-9.3Mg (wt.%) alloy[J]. Mater. Sci. Eng., 2020, A786: 139398
|
38 |
Farkoosh A R. Development of creep-resistant Al-Si cast alloys strengthened with nanoscale dispersoids[D]. Montreal: McGill University, 2015
|
39 |
Farkoosh A R, Chen X G, Pekguleryuz M. Interaction between molybdenum and manganese to form effective dispersoids in an Al-Si-Cu-Mg alloy and their influence on creep resistance[J]. Mater. Sci. Eng., 2015, A627: 127
|
40 |
Fiedler T, Dörries K, Rösler J. Selective laser melting of Al and AlSi10Mg: Parameter study and creep experiments[J]. Prog. Addit. Manuf., 2022, 7: 583
|
41 |
Michi R A, Sisco K, Bahl S, et al. A creep-resistant additively manufactured Al-Ce-Ni-Mn alloy[J]. Acta Mater., 2022, 227: 117699
|
42 |
Wu T, Poplawsky J D, Allard L F, et al. Microstructure and strengthening of Al-6Ce-3Ni-0.7Fe (wt%) alloy manufactured by laser powder-bed fusion[J]. Addit. Manuf., 2023, 78: 103858
|
43 |
Rakhmonov J U, Weiss D, Dunand D C. Solidification microstructure, aging evolution and creep resistance of laser powder-bed fused Al-7Ce-8Mg (wt%)[J]. Addit. Manuf., 2022, 55: 102862
|
44 |
Qu P F, Yang W C, Liu C, et al. Tensile deformation dominated by matrix dislocations at intermediate temperatures revealed using in-situ EBSD in superalloys[J]. Mater. Res. Lett., 2024, 12: 116
|
45 |
Dong D Y, Liu Y, Wang L, et al. Effect of strain rate on dynamic deformation behavior of DP780 steel[J]. Acta Metall. Sin., 2013, 49: 159
doi: 10.3724/SP.J.1037.2012.00515
|
|
董丹阳, 刘 杨, 王 磊 等. 应变速率对DP780钢动态拉伸变形行为的影响[J]. 金属学报, 2013, 49: 159
doi: 10.3724/SP.J.1037.2012.00515
|
46 |
Li B B, Li Q A, Chen X Y, et al. High temperature creep behavior of Mg-9Gd-4Y-1Zn-0.5Zr alloy[J]. Trans. Mater. Heat Treat., 2018, 39(6): 49
|
|
孟波波, 李全安, 陈晓亚 等. Mg-9Gd-4Y-1Zn-0.5Zr合金的高温蠕变行为[J]. 材料热处理学报, 2018, 39(6): 49
doi: 10.13289/j.issn.1009-6264.2018-0046
|
47 |
Theska F, Yang Y, Sisco K D, et al. On the high-temperature stability of the Al8Cu3Ce intermetallic in an additively manufactured Al-Cu-Ce-Zr alloy[J]. Mater. Charact., 2022, 191: 112109
|
48 |
Zhao Y H, Chang Y P, Li X P, et al. Phase precipitation and strengthening behavior of a novel polycrystalline Ni3Al-based intermetallic alloy at 1100 oC[J]. Acta Mater., 2024, 265: 119601
|
49 |
Liu Y, Michi R A, Dunand D C. Cast near-eutectic Al-12.5wt.% Ce alloy with high coarsening and creep resistance[J]. Mater. Sci. Eng., 2019, A767: 138440
|
50 |
Carreño F, Ruano O A. Separated contribution of particles and matrix on the creep behavior of dispersion strengthened materials[J]. Acta Mater., 1998, 46: 159
|
51 |
Spigarelli S, Cabibbo M, Evangelista E, et al. Evaluation of the creep properties of an Al-17Si-1Mg-0.7Cu alloy[J]. Mater. Lett., 2002, 56: 1059
|
52 |
Rösler J, Bao G, Evans A G. The effects of diffusional relaxation on the creep strength of composites[J]. Acta Metall. Mater., 1991, 39: 2733
|
53 |
Chesser I, Koju R K, Vellore A, et al. Atomistic modeling of metal-nonmetal interphase boundary diffusion[J]. Acta Mater., 2023, 257: 119172
|
54 |
Zan Y N, Zhou Y T, Liu Z Y, et al. Microstructure and mechanical properties of (B4C + Al2O3)/Al composites designed for neutron absorbing materials with both structural and functional usages[J]. Mater. Sci. Eng., 2020, A773: 138840
|
55 |
Peng H L, Jin C, Dong B X, et al. In-situ tailoring microstructure well-balanced strength and ductility in Al-Cu alloy[J]. Mater. Sci. Eng., 2023, A880: 145350
|
56 |
Li Z, Zhang Z, Chen X G. Effect of metastable Mg2Si and dislocations on α-Al(MnFe)Si dispersoid formation in Al-Mn-Mg 3xxx alloys[J]. Metall. Mater. Trans., 2018, 49A: 5799
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|