Non-Equilibrium Solidification Behavior and Microstructure Evolution of Undercooled Fe7(CoNiMn)80B13 Eutectic High-Entropy Alloy
WANG Yeqing, FU Ke, ZHAO Yongzhu, SU Liji, CHEN Zheng()
School of Material Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
Cite this article:
WANG Yeqing, FU Ke, ZHAO Yongzhu, SU Liji, CHEN Zheng. Non-Equilibrium Solidification Behavior and Microstructure Evolution of Undercooled Fe7(CoNiMn)80B13 Eutectic High-Entropy Alloy. Acta Metall Sin, 2025, 61(1): 143-153.
Eutectic high-entropy alloys show excellent properties, such as casting property, mechanical properties, corrosion resistance properties, and so on. They are usually consisted of two kinds of phases, which would be compete with each other in the non-equilibrium solidification process. Fe7(CoNiMn)80B13 eutectic high-entropy alloy has complex phase transition and microstructure evolution behavior during the non-equilibrium solidification process. In order to reveal the non-equilibrium solidification characteristics and microstructure evolution mechanism, Fe7(CoNiMn)80B13 eutectic high-entropy alloy was undercooled by the molten glass fluxing method in this work. The results show that the solidification path and microstructure of undercooled Fe7(CoNiMn)80B13 eutectic high-entropy alloy can be divided into 5 categories. At low undercooling (ΔT < 57 K), the cooling curve has only one recalescence phenomenon. The corresponding solidification microstructure is primary B-rich phase + peritectic α-(Fe, Co, Ni, Mn) phase + eutectic structure. At medium undercooling (ΔT = 57~111 K), there are two recalescence phenomena on the cooling curve. The corresponding solidification microstructure can be divided into two types: the first is primary M23B6 dendrite + secondary α-(Fe, Co, Ni, Mn) halo + regular eutectic; the second is primary α-(Fe, Co, Ni, Mn) dendrite + regular eutectic. At high undercooling (ΔT = 139~198 K), the cooling curve shows a single recalescence phenomenon again. The corresponding solidification microstructure can be divided into two types: the first is a mixture of B-rich phase + M23B6 + α-(Fe, Co, Ni, Mn) three phases, and the second is M23B6 + α-(Fe, Co, Ni, Mn) anomalous eutectic. Note that the type of primary phase transited for twice with the increase of undercooling: B-rich phase→M23B6 phase→α-(Fe, Co, Ni, Mn) phase. In addition, the orientation relationship of two eutectic phases in regular eutectic at low undercooling is consistent with that of two phases in anomalous eutectic at high undercooling.
Fig.1 Temperature-time profiles of the undercooled Fe7(CoNiMn)80B13 eutectic high-entropy alloys (ΔT—undercooling, Tm—melting temperature)
Fig.2 XRD spectra of the as-cast Fe7(CoNiMn)80B13 eutectic high-entropy alloys and with different ΔT
Fig.3 SEM back-scattered electron (BSE) images (a-d) and EDS line scanning result (e) of the Fe7(CoNiMn)80B13 eutectic high-entropy alloys with ΔT = 23 K (a, b) low (a) and high (b) magnifications, dendrites + fine structure (c) locally enlarged image of region 1 in Fig.3b, eutectic structure (d) locally enlarged image of region 2 in Fig.3b, net structure
ΔT / K
Region
Fe
Co
Ni
Mn
023
Average
10.0
41.1
40.5
08.4
Dark phase
14.7
55.3
24.8
05.2
Light phase
11.7
47.3
33.8
07.2
057
Average
09.7
38.9
38.4
12.9
Dark phase
14.7
56.4
20.7
08.2
090
Average
08.4
31.3
29.5
30.8
Dark phase
16.7
43.9
11.9
27.5
Light phase
12.0
37.5
20.4
30.1
139
Average
10.2
41.0
36.7
12.0
P1
11.6
42.6
33.7
11.0
P2
04.4
19.6
53.6
23.4
P3
14.3
52.8
21.6
07.3
198
Average
09.2
40.7
38.5
11.6
Dark phase
04.3
26.4
50.1
19.2
Light phase
12.8
46.5
33.0
07.7
Table 1 EDS analysis results of the Fe7(CoNiMn)80B13 eutectic high-entropy alloys with different ΔT
Fig.4 SEM-BSE images of the Fe7(CoNiMn)80B13 eutectic high-entropy alloys under ΔT = 57 K (a-c), ΔT = 90 K (d-f), ΔT = 139 K (g-i), and ΔT = 198 K (j-l) with different magnifications (The microstructure at the region I in Fig.4a is magnified in Fig.4b, and those at the regions II and III in Fig.4f represent two kinds of eutectic structure with different lamellar spacing. EDS results of regions P1-P3 in Fig.4i are listed in Table 1. The area enclosed by dashed lines in Fig.4j show the clustered eutetic structures)
Fig.5 EBSD analysis results of the eutectic structure in Fe7(CoNiMn)80B13 eutectic high-entropy alloys under ΔT = 57 K (a) phase map (b) EBSD map (Inset is the inverse pole figure (IPF) map of single α-(Fe, Co, Ni, Mn) phase) (c) pole figures of α-(Fe, Co, Ni, Mn) solid solution phase in crystal plane groups {100}, {110}, and {111}, respectively (Circles represent coincident orientations between M23B6 phase and α-(Fe, Co, Ni, Mn)) (d) pole figures of M23B6 phase in crystal plane groups {100}, {110}, and {111}, respectively
Fig.6 EBSD analysis results of the anomalous eutectic structure in Fe7(CoNiMn)80B13 eutectic high-entropy alloys under ΔT = 198 K (a) phase map (b) EBSD map (Inset is the IPF map of single α-(Fe, Co, Ni, Mn) phase) (c) pole figures of α-(Fe, Co, Ni, Mn) phase in crystal plane groups {100}, {110}, and {111}, respectively (d) pole figures of M23B6 phase in crystal plane groups {100}, {110}, and {111}, respectively
Fig.7 Solid-liquid interfacial morphologies of Fe7(CoNiMn)80B13 eutectic high-entropy alloys under ΔT = 23 K (a), ΔT = 111 K (b), and ΔT = 154 K (c) (Red dashed lines and red arrow in Fig.7a show the solid-liquid interface and the growing direction of the solid phase, respectively. Circles with yellow, blue, and green colors in Fig.7b represent three nucleation points in the melt)
1
Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys[J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200
pmid: 25160691
2
Jiao W N, Lu Y P, Cao Z Q, et al. Progress and prospect of eutectic high entropy alloys[J]. Spec. Cast. Nonferrous Alloys, 2022, 42: 265
Wu P H, Liu N, Yang W, et al. Microstructure and solidification behavior of multicomponent CoCrCu x FeMoNi high-entropy alloys[J]. Mater. Sci. Eng., 2015, A642: 142
4
Shukla S, Wang T H, Cotton S, et al. Hierarchical microstructure for improved fatigue properties in a eutectic high entropy alloy[J]. Scr. Mater., 2018, 156: 105
5
Wang M L, Lu Y P, Wang T M, et al. A novel bulk eutectic high-entropy alloy with outstanding as-cast specific yield strengths at elevated temperatures[J]. Scr. Mater., 2021, 204: 114132
6
Jiang H, Han K M, Gao X X, et al. A new strategy to design eutectic high-entropy alloys using simple mixture method[J]. Mater. Des., 2018, 142: 101
7
Jiang H, Qiao D X, Lu Y P, et al. Direct solidification of bulk ultrafine-microstructure eutectic high-entropy alloys with outstanding thermal stability[J]. Scr. Mater., 2019, 165: 145
8
Rogal Ł, Morgiel J, Świątek Z, et al. Microstructure and mechanical properties of the new Nb25Sc25Ti25Zr25 eutectic high entropy alloy[J]. Mater. Sci. Eng., 2016, A651: 590
9
Ye X C, Xiong J Y, Wu X, et al. A new infinite solid solution strategy to design eutectic high entropy alloys with B2 and BCC structure[J]. Scr. Mater., 2021, 199: 113886
10
Wang F J, Zhang Y, Chen G L, et al. Cooling rate and size effect on the microstructure and mechanical properties of AlCoCrFeNi high entropy alloy[J]. J. Eng. Mater. Technol., 2009, 131: 034501
11
Li J S, Jia W J, Wang J, et al. Enhanced mechanical properties of a CoCrFeNi high entropy alloy by supercooling method[J]. Mater. Des., 2016, 95: 183
12
Cao L G, Zhu L, Zhang L L, et al. Microstructure evolution and mechanical properties of rapid solidified AlCoCrFeNi2.1 eutectic high entropy alloy[J]. Chin. J. Mater. Res., 2019, 33: 650
Zhao K, Wu S, Jiang S Y, et al. Microstructural refinement and anomalous eutectic structure induced by containerless solidification for high-entropy Fe-Co-Ni-Si-B alloys[J]. Intermetallics, 2020, 122: 106812
14
Yan P X, Chang J, Wang W L, et al. Eutectic growth kinetics and microscopic mechanical properties of rapidly solidified CoCrFeNiMo0.8 high entropy alloy[J]. Acta Mater., 2022, 237: 118149
15
Nassar A, Mullis A, Cochrane R, et al. Rapid solidification of AlCoCrFeNi2.1 high-entropy alloy[J]. J. Alloys Compd., 2022, 900: 163350
16
Guo Y N, Su H J, Zhou H T, et al. Unique strength-ductility balance of AlCoCrFeNi2.1 eutectic high entropy alloy with ultra-fine duplex microstructure prepared by selective laser melting[J]. J. Mater. Sci. Technol., 2022, 111: 298
17
Su J, Chen S Q, Ding Z Y, et al. Solidification behavior of eutectic high entropy alloy fabricated by selective laser melting[J]. Chin. J. Nonferrous Met., 2022, 32: 658
Liang X Y, Chen J, Yao Y H, et al. A novel nano-spaced coherent FCC1/FCC2 eutectic high entropy alloy[J]. Mater. Lett., 2023, 337: 133952
19
Qi T L, Li Y H, Takeuchi A, et al. Soft magnetic Fe25Co25Ni25(B, Si)25 high entropy bulk metallic glasses[J]. Intermetallics, 2015, 66: 8
20
Zhang Z Q, Song K K, Guo S, et al. Optimizing mechanical properties of Fe26.7Co26.7Ni26.7Si8.9B11 high entropy alloy by inducing hypoeutectic to quasi-duplex microstructural transition[J]. Sci. Rep., 2019, 9: 360
21
Fu K, Yin B J, Zhao Y Z, et al. Effect of boron content on microstructure evolution and crystallization behavior of Fe7(CoNi)93 - x B x (x = 15, 18, 21) eutectic high-entropy alloys[J]. Intermetallics, 2024, 165: 108131
22
Gao J R, Kao A, Bojarevics V, et al. Modeling of convection, temperature distribution and dendritic growth in glass-fluxed nickel melts[J]. J. Cryst. Growth, 2017, 471: 66
23
Wang Y Q, Shan C X, Wang L, et al. A new complex-regular eutectic in the Fe7(CoNiMn)93 - x B x high entropy alloys[J]. J. Mater. Res. Technol., 2024, 30: 4521
24
Yang C L, Liu F, Yang G C, et al. Structure evolution upon non-equilibrium solidification of bulk undercooled Fe-B system[J]. J. Cryst. Growth, 2009, 311: 404
25
Wang Y Q, Gao J R, Kolbe M, et al. Metastable solidification of hypereutectic Co2Si-CoSi composition: Microstructural studies and in-situ observations[J]. Acta Mater., 2018, 142: 172
26
Zhao R J, Wang Y Q, Gao J R, et al. In situ and ex situ studies of anomalous eutectic formation in undercooled Ni-Sn alloys[J]. Acta Mater., 2020, 197: 198
27
Miettinen J, Vassilev G. Thermodynamic description of ternary Fe-B-X systems. Part 2: Fe-B-Ni[J]. Arch. Metall. Mater., 2014, 59: 609
28
van Loo F J J, van Beek J A. Reactions and phase relations in the systems Fe-Ni-B and Fe-Co-B[J]. Z. Metallkd., 1989, 80: 245
29
Miettinen J, Lilova K, Vassilev G. Thermodynamic description of ternary Fe-B-X systems. Part 3: Fe-B-Mn[J]. Arch. Metall. Mater., 2014, 59: 1481
30
Jackson K A, Hunt J D. Lamellar and rod eutectic growth[A]. Dynamics of Curved Fronts[M]. Pittsburgh: Academic Press, 1988: 363
31
Wang Y Q, Gao J R, Shahani A J. Effects of Al substitution for Zn on the non-equilibrium solidification behavior of Zn-3Mg alloys[A]. Materials Processing Fundamentals 2020[M]. Cham: Springer, 2020: 23
32
Kattamis T Z, Flemings M C. Structure of undercooled Ni-Sn eutectic[J]. Metall. Trans., 1970, 1B: 1449
33
Wu Y, Piccone T J, Shiohara Y, et al. Dendritic growth of undercooled nickel-tin: Part III[J]. Metall. Trans., 1988, 19A: 1109
34
Jones B L. Growth mechanisms in undercooled eutectics[J]. Metall. Trans., 1971, 2: 2950
35
Tewari S N. Effect of undercooling on the microstructure of Ni-35 at. pct Mo (eutectic) and Ni-38 at. pct Mo (hypereutectic) alloys[J]. Metall. Trans., 1987, 18A: 525
36
Zhao S, Li J F, Liu L, et al. Eutectic growth from cellular to dendritic form in the undercooled Ag-Cu eutectic alloy melt[J]. J. Cryst. Growth, 2009, 311: 1387
37
Liu L, Li J F, Zhou Y H. Solidification interface morphology pattern in the undercooled Co-24.0at.% Sn eutectic melt[J]. Acta Mater., 2011, 59: 5558
38
Goetzinger R, Barth M, Herlach D M. Mechanism of formation of the anomalous eutectic structure in rapidly solidified Ni-Si, Co-Sb and Ni-Al-Ti alloys[J]. Acta Metall., 1998, 46: 1647
39
Lai C, Wang H F, Pu Q, et al. Phase selection and re-melting-induced anomalous eutectics in undercooled Ni-38 wt% Si alloys[J]. J. Mater. Sci., 2016, 51: 10990