|
|
Interfacial Compatibility for Laser Melting Deposition of CoCrNiCu Medium-Entropy Alloy on 316L Austenitic Stainless Steel Surface |
YU Yunhe1, XIE Yong1, CHEN Peng1, DONG Haokai2, HOU Jixin1( ), XIA Zhixin1( ) |
1.Shagang School of Iron and Steel, Soochow University, Suzhou 215137, China 2.School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China |
|
Cite this article:
YU Yunhe, XIE Yong, CHEN Peng, DONG Haokai, HOU Jixin, XIA Zhixin. Interfacial Compatibility for Laser Melting Deposition of CoCrNiCu Medium-Entropy Alloy on 316L Austenitic Stainless Steel Surface. Acta Metall Sin, 2024, 60(9): 1213-1228.
|
Abstract Dissimilar materials can achieve multifunction and multiperformance coupling and have broad development prospects in areas, such as aerospace, energy, automotive, and biomedicine. The properties of dissimilar materials can be improved by enhancing the compatibility of the heterogeneous interface. Herein, a laser melting deposition experiment of CoCrNiCu medium-entropy alloy (MEA) on the surface of 316L stainless steel was carried out. The microstructure morphology and interface characteristics of the dissimilar materials were characterized using SEM, STEM, EBSD, and transmission Kikuchi diffraction (TKD). The interfacial mechanical properties of the dissimilar materials were tested. The methods for promoting the bonding strength of dissimilar materials were then proposed by systematically exploring the interfacial compatibility of the microstructure and crystallography. The results show that a total solution transition zone of CoCrNiCuFe, a high-entropy alloy, was formed at the interface between CoCrNiCu MEA and 316L stainless steel. The shear strength of the dissimilar material can reach 324 MPa. Through the synergistic effect of austenite stability reduction caused by C interfacial partitioning and the plastic deformation induced by residual stress, some austenite grains of 316L stainless steel near the interface of the dissimilar materials undergo strain-induced martensitic transformation. This can promote the transformation-induced plasticity (TRIP) effect to improve the strength and ductility of the dissimilar materials while reducing interface matching. Therefore, as for the dissimilar materials with small physical discrepancies, single-phase matching with the same crystal structure should be maintained to increase the interfacial bonding strength by improving the interfacial crystallography compatibility. The TRIP effect can be used to design a duplex structure to improve the process of coordinated deformation for dissimilar materials with large physical discrepancies.
|
Received: 08 October 2022
|
|
Fund: National Natural Science Foundation of China(52071124,U2030102);Fund of Key Laboratory of Advanced Materials of Ministry of Education(ADV22-12);Jiangsu Funding Program for Excellent Postdoctoral Talent |
Corresponding Authors:
XIA Zhixin, professor, Tel: (0512) 67580785, E-mail: xiazhixin2000@163.com HOU Jixin, associate professor, Tel: (0512) 67580785, E-mail: jxhou@foxmail.com
|
1 |
Wang D, Deng G W, Yang Y Q, et al. Research progress on additive manufacturing of metallic heterogeneous materials [J]. J. Mech. Eng., 2021, 57(1): 186
doi: 10.3901/JME.2021.01.186
|
|
王 迪, 邓国威, 杨永强 等. 金属异质材料增材制造研究进展 [J]. 机械工程学报, 2021, 57(1): 186
|
2 |
Li W, Jia X Q, Jin X J. Research progress of microstructure control and strengthening mechanism of QPT process advanced steel with high strength and toughness [J]. Acta Metall. Sin., 2022, 58: 444
doi: 10.11900/0412.1961.2021.00524
|
|
李 伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展 [J]. 金属学报, 2022, 58: 444
|
3 |
Wang C Y, Chang Y, Zhou F L, et al. M3 microstructure control theory and technology of the third-generation automotive steels with high strength and high ductility [J]. Acta Metall. Sin., 2020, 56: 400
|
|
王存宇, 常 颖, 周峰峦 等. 高强度高塑性第三代汽车钢的M3组织调控理论与技术 [J]. 金属学报, 2020, 56: 400
doi: 10.11900/0412.1961.2019.00371
|
4 |
Vaezi M, Chianrabutra S, Mellor B, et al. Multiple material additive manufacturing- Part 1: A review [J]. Virt. Phys. Prototyp., 2013, 8: 19
|
5 |
Ming H L, Zhang Z M, Wang J Q, et al. Microstructure and local properties of a domestic safe-end dissimilar metal weld joint by using hot-wire GTAW [J]. Acta Metall. Sin., 2017, 53: 57
doi: 10.11900/0412.1961.2016.00135
|
|
明洪亮, 张志明, 王俭秋 等. 国产核电安全端异种金属焊接件的微观结构及局部性能研究 [J]. 金属学报, 2017, 53: 13
|
6 |
Li B, Fu J Z, Feng J W, et al. Review of heterogeneous material objects modeling in additive manufacturing [J]. Vis. Comput. Ind. Biomed. Art., 2020, 3: 6
|
7 |
Garcia D, Wu Z L, Kim J Y, et al. Heterogeneous materials design in additive manufacturing: Model calibration and uncertainty-guided model selection [J]. Addit. Manuf., 2019, 27: 61
doi: 10.1016/j.addma.2019.02.014
|
8 |
Wang J T, Fu X, Zhang L B, et al. A short review on laser welding/brazing of aluminum alloy to steel [J]. Int. J. Adv. Manuf. Technol., 2021, 112: 2399
|
9 |
Yang J, Oliveira J P, Li Y L, et al. Laser techniques for dissimilar joining of aluminum alloys to steels: A critical review [J]. J. Mater. Process. Technol., 2022, 301: 117443
|
10 |
Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
|
11 |
George E P, Curtin W A, Tasan C C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms [J]. Acta Mater., 2020, 188: 435
|
12 |
Cantor B. Multicomponent high-entropy Cantor alloys [J]. Prog. Mater. Sci., 2021, 120: 100754
|
13 |
Zhang Y L, Jiang X S, Fang Y, et al. Research and development of welding methods and welding mechanism of high-entropy alloys: A review [J]. Mater. Today Commun., 2021, 28: 102503
|
14 |
Li J, Zhao H L, Zhou N, et al. Diffusion bonding of CoCrFeNiCu high-entropy alloy to 304 stainless steel [J]. Acta Metall. Sin., 2021, 57: 1567
doi: 10.11900/0412.1961.2021.00031
|
|
李 娟, 赵宏龙, 周 念 等. CoCrFeNiCu高熵合金与304不锈钢真空扩散焊 [J]. 金属学报, 2021, 57: 1567
|
15 |
Sokkalingam R, Muthupandi V, Sivaprasad K, et al. Dissimilar welding of Al0.1CoCrFeNi high-entropy alloy and AISI304 stainless steel [J]. J. Mater. Res., 2019, 34: 2683
|
16 |
Kim D G, Jo Y H, Song T, et al. Excellent strength-ductility combination of multi-layered sheets composed of high-strength V10Cr10Fe50Co30 high entropy alloy and 304 austenitic stainless steel [J]. Mater. Sci. Eng., 2021, A823: 141727
|
17 |
Oliveira J P, Shen J J, Zeng Z, et al. Dissimilar laser welding of a CoCrFeMnNi high entropy alloy to 316 stainless steel [J]. Scr. Mater., 2022, 206: 114219
|
18 |
Oliveira J P, Shamsolhodaei A, Shen J J, et al. Improving the ductility in laser welded joints of CoCrFeMnNi high entropy alloy to 316 stainless steel [J]. Mater. Des., 2022, 219: 110717
|
19 |
Adomako N K, Shin G, Park N, et al. Laser dissimilar welding of CoCrFeMnNi-high entropy alloy and duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 85: 95
doi: 10.1016/j.jmst.2021.02.003
|
20 |
Yan S H, Zhou H Y, Zhu Z Y, et al. High strength-ductility synergy in a laser welded dissimilar joint of CrCoNi medium-entropy alloy and stainless steel [J]. Mater. Sci. Eng., 2022, A840: 142854
|
21 |
Fang Y Z, Dai G Q, Guo Y H, et al. Effect of laser oscillation on the microstructure and mechanical properties of laser melting deposition titanium alloys [J]. Acta Metall. Sin., 2023, 59: 136
doi: 10.11900/0412.1961.2021.00600
|
|
方远志, 戴国庆, 郭艳华 等. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59: 136
doi: 10.11900/0412.1961.2021.00600
|
22 |
Kok Y, Tan X P, Wang P, et al. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review [J]. Mater. Des., 2018, 139: 565
|
23 |
Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
|
24 |
Chen P, Chen L, Xu J C, et al. Formation mechanism of pearlite during thermal cycling in U75V steel rail repaired by laser directed energy deposition [J]. J. Laser Appl., 2021, 33: 032017
|
25 |
Xie Y, Xia Z X, Hou J X, et al. Effect of Cu-rich phase precipitation on the microstructure and mechanical properties of CoCrNiCu x medium-entropy alloys prepared via laser directed energy deposition [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1591
|
26 |
Xu Y T, Nie Y H, Wang M J, et al. The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging [J]. Acta Mater., 2017, 131: 110
|
27 |
Agrawal P, Gupta S, Shukla S, et al. Role of Cu addition in enhancing strength-ductility synergy in transforming high entropy alloy [J]. Mater. Des., 2022, 215: 110487
|
28 |
Stoller R E, Zinkle S J. On the relationship between uniaxial yield strength and resolved shear stress in polycrystalline materials [J]. J. Nucl. Mater., 2000, 283-287: 349
|
29 |
Yang Y, Hu J, Liu X Y, et al. Post treatment of an additively manufactured composite consisting of 304L stainless steel and CoCrFe-MnNi high-entropy alloy [J]. Mater. Sci. Eng., 2022, A831: 142104
|
30 |
Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys [J]. Mater. Chem. Phys., 2012, 132: 233
|
31 |
Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects [J]. Mater. Today, 2016, 19: 349
|
32 |
Li Z T, Zhang W D, Wu Z G. Nature of CoCrFeMnNi/Fe and CoCrFeMnNi/Al solid/solid interface [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1483
|
33 |
Liu D J, Wang W X, Zha X A, et al. Effects of groove on the microstructure and mechanical properties of dissimilar steel welded joints by using high-entropy filler metals [J]. J. Mater. Res. Technol., 2021, 13: 173
|
34 |
Chandrakant, Reddy N S, Panigrahi B B. Electro spark coating of AlCoCrFeNi high entropy alloy on AISI410 stainless steel [J]. Mater. Lett., 2021, 304: 130580
|
35 |
Masumura T, Nakada N, Tsuchiyama T, et al. The difference in thermal and mechanical stabilities of austenite between carbon- and nitrogen-added metastable austenitic stainless steels [J]. Acta Mater., 2015, 84: 330
|
36 |
Olson G B, Cohen M. A mechanism for the strain-induced nucleation of martensitic transformations [J]. J. Less Common Met., 1972, 28: 107
|
37 |
Lee S G, Jo Y H, Song T, et al. Strength-ductility enhancement in multi-layered sheet with high-entropy alloy and high-Mn twinning-induced plasticity steel [J]. Mater. Sci. Eng., 2021, A822: 141670
|
38 |
Zhang S Q, Wang Q, Yang R, et al. Composition equivalents of stainless steels understood via gamma stabilizing efficiency [J]. Sci. Rep., 2021, 11: 5423
doi: 10.1038/s41598-021-84917-z
pmid: 33686112
|
39 |
Eichelman G, Hull F. The effect of composition on the temperature of spontaneous transformation of austenite to martensite in 18-8-type stainless steel [J]. Trans. Am. Soc. Met., 1953, 45: 77
|
40 |
da Rocha M R, de Oliveira C A S. Evaluation of the martensitic transformations in austenitic stainless steels [J]. Mater. Sci. Eng., 2009, A517: 281
|
41 |
Angel T. Formation of martensite in austenitic stainless steels effects of deformation, temperature, and composition [J]. J. Iron Steel Inst., 1954, 177: 165
|
42 |
Nohara K, Ono Y, Ohashi N. Composition and grain size dependencies of strain-induced martensitic transformation in metastable austenitic stainless steels [J]. Tetsu Hagané, 1977, 63: 772
|
|
野原 清彦, 小野 寛, 大橋 延夫. 準安定オーステナイトステンレス鋼における加工誘起マルテンサイト変態の組成および結晶粒度依存性 [J]. 鉄と鋼, 1997, 63: 772
|
43 |
Hedayati A, Najafizadeh A, Kermanpur A, et al. The effect of cold rolling regime on microstructure and mechanical properties of AISI 304L stainless steel [J]. J. Mater. Process. Technol., 2010, 210: 1017
|
44 |
Mahmoudiniya M, Kheirandish S, Asadiasadabad M. The effect of cold rolling on microstructure and mechanical properties of a new Cr-Mn austenitic stainless steel in comparison with AISI 316 stainless steel [J]. Trans. Indian Inst. Met., 2017, 70: 1251
|
45 |
Solomon N, Solomon I. Deformation induced martensite in AISI 316 stainless steel [J]. Rev. Metal., 2010, 46: 121
|
46 |
Sohrabi M J, Naghizadeh M, Mirzadeh H. Deformation-induced martensite in austenitic stainless steels: A review [J]. Arch. Civil Mech. Eng., 2020, 20: 124
|
47 |
Zhao J Q, Tian H, Wang Z, et al. FCC-to-HCP phase transformation in CoCrNi x medium-entropy alloys [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1151
|
48 |
Laplanche G, Gadaud P, Bärsch C, et al. Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy [J]. J. Alloys Compd., 2018, 746: 244
|
49 |
Tian Y, Gorbatov O I, Borgenstam A, et al. Deformation microstructure and deformation-induced martensite in austenitic Fe-Cr-Ni alloys depending on stacking fault energy [J]. Metall. Mater. Trans., 2017, 48A: 1
|
50 |
Das A, Sivaprasad S, Ghosh M, et al. Morphologies and characteristics of deformation induced martensite during tensile deformation of 304 LN stainless steel [J]. Mater. Sci. Eng., 2008, A486: 283
|
51 |
Pierce D T, Jiménez J A, Bentley J, et al. The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe-Mn-Al-Si steels during tensile deformation [J]. Acta Mater., 2015, 100: 178
|
52 |
Song H, Yang J, Jo Y H, et al. Excellent combination of cryogenic-temperature strength and ductility of high-entropy-alloy-cored multi-layered sheet [J]. J. Alloys Compd., 2019, 797: 465
|
53 |
Lee Y K, Lee S J, Han J. Critical assessment 19: Stacking fault energies of austenitic steels [J]. Mater. Sci. Technol., 2016, 32: 1
|
54 |
Tian Y, Borgenstam A, Hedström P. Comparing the deformation-induced martensitic transformation with the athermal martensitic transformation in Fe-Cr-Ni alloys [J]. J. Alloys Compd., 2018, 766: 131
|
55 |
Wang J L, Huang M H, Hu J, et al. EBSD investigation of the crystallographic features of deformation-induced martensite in stainless steel [J]. J. Mater. Sci. Technol., 2021, 69: 148
doi: 10.1016/j.jmst.2020.08.023
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|