Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (9): 1213-1228    DOI: 10.11900/0412.1961.2022.00426
Research paper Current Issue | Archive | Adv Search |
Interfacial Compatibility for Laser Melting Deposition of CoCrNiCu Medium-Entropy Alloy on 316L Austenitic Stainless Steel Surface
YU Yunhe1, XIE Yong1, CHEN Peng1, DONG Haokai2, HOU Jixin1(), XIA Zhixin1()
1.Shagang School of Iron and Steel, Soochow University, Suzhou 215137, China
2.School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
Cite this article: 

YU Yunhe, XIE Yong, CHEN Peng, DONG Haokai, HOU Jixin, XIA Zhixin. Interfacial Compatibility for Laser Melting Deposition of CoCrNiCu Medium-Entropy Alloy on 316L Austenitic Stainless Steel Surface. Acta Metall Sin, 2024, 60(9): 1213-1228.

Download:  HTML  PDF(5354KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Dissimilar materials can achieve multifunction and multiperformance coupling and have broad development prospects in areas, such as aerospace, energy, automotive, and biomedicine. The properties of dissimilar materials can be improved by enhancing the compatibility of the heterogeneous interface. Herein, a laser melting deposition experiment of CoCrNiCu medium-entropy alloy (MEA) on the surface of 316L stainless steel was carried out. The microstructure morphology and interface characteristics of the dissimilar materials were characterized using SEM, STEM, EBSD, and transmission Kikuchi diffraction (TKD). The interfacial mechanical properties of the dissimilar materials were tested. The methods for promoting the bonding strength of dissimilar materials were then proposed by systematically exploring the interfacial compatibility of the microstructure and crystallography. The results show that a total solution transition zone of CoCrNiCuFe, a high-entropy alloy, was formed at the interface between CoCrNiCu MEA and 316L stainless steel. The shear strength of the dissimilar material can reach 324 MPa. Through the synergistic effect of austenite stability reduction caused by C interfacial partitioning and the plastic deformation induced by residual stress, some austenite grains of 316L stainless steel near the interface of the dissimilar materials undergo strain-induced martensitic transformation. This can promote the transformation-induced plasticity (TRIP) effect to improve the strength and ductility of the dissimilar materials while reducing interface matching. Therefore, as for the dissimilar materials with small physical discrepancies, single-phase matching with the same crystal structure should be maintained to increase the interfacial bonding strength by improving the interfacial crystallography compatibility. The TRIP effect can be used to design a duplex structure to improve the process of coordinated deformation for dissimilar materials with large physical discrepancies.

Key words:  additive manufacturing      laser melting deposition      dissimilar material      interface design      medium-entropy alloy      stainless steel     
Received:  08 October 2022     
ZTFLH:  TG113.12  
Fund: National Natural Science Foundation of China(52071124,U2030102);Fund of Key Laboratory of Advanced Materials of Ministry of Education(ADV22-12);Jiangsu Funding Program for Excellent Postdoctoral Talent
Corresponding Authors:  XIA Zhixin, professor, Tel: (0512) 67580785, E-mail: xiazhixin2000@163.com
HOU Jixin, associate professor, Tel: (0512) 67580785, E-mail: jxhou@foxmail.com

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00426     OR     https://www.ams.org.cn/EN/Y2024/V60/I9/1213

Fig.1  Schematic of laser melting deposition for dissimilar materials (a) and specimen macroscopic morphology of deposition layers with total scanning length of 18 cm (b) (MEA—medium-entropy alloy)
Fig.2  Secondary electron (SE) (a, b) and back-scattered electron (BSE) (c) SEM images of the dissimilar materials of CoCrNiCu MEA and 316L stainless steel at different magnifications
MaterialPositionCoCrNiCuFeMoMnSiC
CoCrNiCu MEAP122.720.925.714.816.0----
P223.321.526.112.616.5----
Transition zoneP320.520.723.610.624.6----
P421.120.823.510.524.1----
316L stainless steelP50.917.310.70.6Bal.1.901.070.390.03*
P60.917.510.30.6Bal.2.001.020.440.03*
CoCrNiCu MEAOriginal25.322.325.227.2-----
316L stainless steelOriginal-16.510.2-Bal.2.061.220.530.03
Table 1  Chemical compositions of original CoCrNiCu MEA and 316L stainless steel and different positions of heterogeneous interface between CoCrNiCu MEA and 316L stainless steel measured by EDS
Fig.3  STEM analyses of the dissimilar materials of CoCrNiCu MEA and 316L stainless steel
(a) bright field (BF) image (b) high-angle annular dark field (HAADF) image
(c) EDS diagram (d) Fe mapping (e) Co mapping (f) Cu mapping
Fig.4  EBSD analyses of the dissimilar materials of CoCrNiCu MEA and 316L stainless steel
(a) bond contrast (BC) image (The high-angle boundaries with misorientation angle >15° and low-angle boundaries with misorientation angle at 2°~15° are marked with black and red lines, respectively)
(b) inverse pole figure (IPF)
(c) phase distribution (PD) figure
(d) kernel average misorientation (KAM) map
(e1, e2) comparisons of the IPF (e1) and KAM map (e2) for the local magnification area of dissimilar material interface in Figs.4b and d, respectively (Types 1, 2, and 3 represent the interfaces with complete martensitic transformation, without martensitic transformation, and with incomplete martensitic transformation, respectively)
Fig.5  TEM images and interfacial element partitioning of the dissimilar materials of CoCrNiCu MEA and 316L stainless steel
(a) TEM image of 316L stainless steel (b) TEM image of CoCrNiCu MEA
(c) EDS element mapping near the interface (d) EDS line scan profile across the interface
Fig.6  Microhardness, strength, and fracture morphology for the dissimilar materials of CoCrNiCu MEA and 316L stainless steel
(a) sampling location for microhardness
(b) microhardness distribution
(c) strength profile (σy—yield strength, τ—shear strength)
(d) fracture morphology of dissimilar materials (Inset shows the locally enlarged image)
Fig.7  Calculation results of solid solution criterions for the dissimilar materials of CoCrNiCu MEA and 316L stainless steel
(a) Ω-δ criterion (Ω—ratio parameter, δ—atomic size difference)
(b) mixing enthalpy (ΔHmix) criterion
MaterialPositionNieqCreqPM
316LOriginal19.412.0A + F
316LP519.813.1A + F
316LP620.312.6A + F
316L, 0.005%CP512.119.2A + F
316L, 0.01%CP512.319.2A + F
316L, 0.02%CP512.719.2A + F
316L, 0.05%CP513.119.2A + F
Table 2  Calculated nickel equivalents (Nieq), chromium equivalents (Creq), and predicted microstructure based on the Schaeffler diagram.
Fig.8  Effects of interfacial partitioning of substitu-tional elements (w(C)—mass fraction of C) (a) and interstitial element C (b) on the predicted microstructures of 316L stainless steel based on the Schaeffler diagram
Fig.9  Finite element model creating and mesh generation for the single-layer single-pass laser melting deposition of CoCrNiCu MEA on 316L stainless steel surface (Inset shows the mesh details near the interfaces of dissimilar materials) (a); simulation results of temperature field (Inset shows the temperature distribution on the cross section perpendicular to the scanning direction, T—temperature) (b); and simulation results of residual thermal stress including the equivalent Mises stress (σMises) (c1) and corresponding components along X (σ11) (c2), Y (σ22) (c3), and Z (σ33) (c4) directions
Fig.10  Evolutions of residual thermal stress perpendicular to the interface of dissimilar materials of CoCrNiCu MEA and 316L stainless steel
Fig.11  TEM analyses of matching mechanism of the heterogeneous interface between CoCrNiCu MEA and 316L stainless steel
(a) dark field (DF) image
(b, c) locally enlarged BF images of square areas of 1 (b) and 2 (c) in Fig.11a
(d-f) high resolution TEM images of the heterogeneous interface show the incoherent interface (d), coherent interface (e), and semi-coherent interface (f)
Fig.12  Transmission Kikuchi diffraction (TKD) analyses of martensitic transformation microstructure in 316L stainless steel
(a) SEM-SE image (b) PD figure (c) IPF
(d-f) Kikuchi band patterns of positions 1 (d), 2 (e), and 3 (f) in Fig.12a
1 Wang D, Deng G W, Yang Y Q, et al. Research progress on additive manufacturing of metallic heterogeneous materials [J]. J. Mech. Eng., 2021, 57(1): 186
doi: 10.3901/JME.2021.01.186
王 迪, 邓国威, 杨永强 等. 金属异质材料增材制造研究进展 [J]. 机械工程学报, 2021, 57(1): 186
2 Li W, Jia X Q, Jin X J. Research progress of microstructure control and strengthening mechanism of QPT process advanced steel with high strength and toughness [J]. Acta Metall. Sin., 2022, 58: 444
doi: 10.11900/0412.1961.2021.00524
李 伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展 [J]. 金属学报, 2022, 58: 444
3 Wang C Y, Chang Y, Zhou F L, et al. M3 microstructure control theory and technology of the third-generation automotive steels with high strength and high ductility [J]. Acta Metall. Sin., 2020, 56: 400
王存宇, 常 颖, 周峰峦 等. 高强度高塑性第三代汽车钢的M3组织调控理论与技术 [J]. 金属学报, 2020, 56: 400
doi: 10.11900/0412.1961.2019.00371
4 Vaezi M, Chianrabutra S, Mellor B, et al. Multiple material additive manufacturing- Part 1: A review [J]. Virt. Phys. Prototyp., 2013, 8: 19
5 Ming H L, Zhang Z M, Wang J Q, et al. Microstructure and local properties of a domestic safe-end dissimilar metal weld joint by using hot-wire GTAW [J]. Acta Metall. Sin., 2017, 53: 57
doi: 10.11900/0412.1961.2016.00135
明洪亮, 张志明, 王俭秋 等. 国产核电安全端异种金属焊接件的微观结构及局部性能研究 [J]. 金属学报, 2017, 53: 13
6 Li B, Fu J Z, Feng J W, et al. Review of heterogeneous material objects modeling in additive manufacturing [J]. Vis. Comput. Ind. Biomed. Art., 2020, 3: 6
7 Garcia D, Wu Z L, Kim J Y, et al. Heterogeneous materials design in additive manufacturing: Model calibration and uncertainty-guided model selection [J]. Addit. Manuf., 2019, 27: 61
doi: 10.1016/j.addma.2019.02.014
8 Wang J T, Fu X, Zhang L B, et al. A short review on laser welding/brazing of aluminum alloy to steel [J]. Int. J. Adv. Manuf. Technol., 2021, 112: 2399
9 Yang J, Oliveira J P, Li Y L, et al. Laser techniques for dissimilar joining of aluminum alloys to steels: A critical review [J]. J. Mater. Process. Technol., 2022, 301: 117443
10 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
11 George E P, Curtin W A, Tasan C C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms [J]. Acta Mater., 2020, 188: 435
12 Cantor B. Multicomponent high-entropy Cantor alloys [J]. Prog. Mater. Sci., 2021, 120: 100754
13 Zhang Y L, Jiang X S, Fang Y, et al. Research and development of welding methods and welding mechanism of high-entropy alloys: A review [J]. Mater. Today Commun., 2021, 28: 102503
14 Li J, Zhao H L, Zhou N, et al. Diffusion bonding of CoCrFeNiCu high-entropy alloy to 304 stainless steel [J]. Acta Metall. Sin., 2021, 57: 1567
doi: 10.11900/0412.1961.2021.00031
李 娟, 赵宏龙, 周 念 等. CoCrFeNiCu高熵合金与304不锈钢真空扩散焊 [J]. 金属学报, 2021, 57: 1567
15 Sokkalingam R, Muthupandi V, Sivaprasad K, et al. Dissimilar welding of Al0.1CoCrFeNi high-entropy alloy and AISI304 stainless steel [J]. J. Mater. Res., 2019, 34: 2683
16 Kim D G, Jo Y H, Song T, et al. Excellent strength-ductility combination of multi-layered sheets composed of high-strength V10Cr10Fe50Co30 high entropy alloy and 304 austenitic stainless steel [J]. Mater. Sci. Eng., 2021, A823: 141727
17 Oliveira J P, Shen J J, Zeng Z, et al. Dissimilar laser welding of a CoCrFeMnNi high entropy alloy to 316 stainless steel [J]. Scr. Mater., 2022, 206: 114219
18 Oliveira J P, Shamsolhodaei A, Shen J J, et al. Improving the ductility in laser welded joints of CoCrFeMnNi high entropy alloy to 316 stainless steel [J]. Mater. Des., 2022, 219: 110717
19 Adomako N K, Shin G, Park N, et al. Laser dissimilar welding of CoCrFeMnNi-high entropy alloy and duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 85: 95
doi: 10.1016/j.jmst.2021.02.003
20 Yan S H, Zhou H Y, Zhu Z Y, et al. High strength-ductility synergy in a laser welded dissimilar joint of CrCoNi medium-entropy alloy and stainless steel [J]. Mater. Sci. Eng., 2022, A840: 142854
21 Fang Y Z, Dai G Q, Guo Y H, et al. Effect of laser oscillation on the microstructure and mechanical properties of laser melting deposition titanium alloys [J]. Acta Metall. Sin., 2023, 59: 136
doi: 10.11900/0412.1961.2021.00600
方远志, 戴国庆, 郭艳华 等. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59: 136
doi: 10.11900/0412.1961.2021.00600
22 Kok Y, Tan X P, Wang P, et al. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review [J]. Mater. Des., 2018, 139: 565
23 Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
24 Chen P, Chen L, Xu J C, et al. Formation mechanism of pearlite during thermal cycling in U75V steel rail repaired by laser directed energy deposition [J]. J. Laser Appl., 2021, 33: 032017
25 Xie Y, Xia Z X, Hou J X, et al. Effect of Cu-rich phase precipitation on the microstructure and mechanical properties of CoCrNiCu x medium-entropy alloys prepared via laser directed energy deposition [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1591
26 Xu Y T, Nie Y H, Wang M J, et al. The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging [J]. Acta Mater., 2017, 131: 110
27 Agrawal P, Gupta S, Shukla S, et al. Role of Cu addition in enhancing strength-ductility synergy in transforming high entropy alloy [J]. Mater. Des., 2022, 215: 110487
28 Stoller R E, Zinkle S J. On the relationship between uniaxial yield strength and resolved shear stress in polycrystalline materials [J]. J. Nucl. Mater., 2000, 283-287: 349
29 Yang Y, Hu J, Liu X Y, et al. Post treatment of an additively manufactured composite consisting of 304L stainless steel and CoCrFe-MnNi high-entropy alloy [J]. Mater. Sci. Eng., 2022, A831: 142104
30 Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys [J]. Mater. Chem. Phys., 2012, 132: 233
31 Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects [J]. Mater. Today, 2016, 19: 349
32 Li Z T, Zhang W D, Wu Z G. Nature of CoCrFeMnNi/Fe and CoCrFeMnNi/Al solid/solid interface [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1483
33 Liu D J, Wang W X, Zha X A, et al. Effects of groove on the microstructure and mechanical properties of dissimilar steel welded joints by using high-entropy filler metals [J]. J. Mater. Res. Technol., 2021, 13: 173
34 Chandrakant, Reddy N S, Panigrahi B B. Electro spark coating of AlCoCrFeNi high entropy alloy on AISI410 stainless steel [J]. Mater. Lett., 2021, 304: 130580
35 Masumura T, Nakada N, Tsuchiyama T, et al. The difference in thermal and mechanical stabilities of austenite between carbon- and nitrogen-added metastable austenitic stainless steels [J]. Acta Mater., 2015, 84: 330
36 Olson G B, Cohen M. A mechanism for the strain-induced nucleation of martensitic transformations [J]. J. Less Common Met., 1972, 28: 107
37 Lee S G, Jo Y H, Song T, et al. Strength-ductility enhancement in multi-layered sheet with high-entropy alloy and high-Mn twinning-induced plasticity steel [J]. Mater. Sci. Eng., 2021, A822: 141670
38 Zhang S Q, Wang Q, Yang R, et al. Composition equivalents of stainless steels understood via gamma stabilizing efficiency [J]. Sci. Rep., 2021, 11: 5423
doi: 10.1038/s41598-021-84917-z pmid: 33686112
39 Eichelman G, Hull F. The effect of composition on the temperature of spontaneous transformation of austenite to martensite in 18-8-type stainless steel [J]. Trans. Am. Soc. Met., 1953, 45: 77
40 da Rocha M R, de Oliveira C A S. Evaluation of the martensitic transformations in austenitic stainless steels [J]. Mater. Sci. Eng., 2009, A517: 281
41 Angel T. Formation of martensite in austenitic stainless steels effects of deformation, temperature, and composition [J]. J. Iron Steel Inst., 1954, 177: 165
42 Nohara K, Ono Y, Ohashi N. Composition and grain size dependencies of strain-induced martensitic transformation in metastable austenitic stainless steels [J]. Tetsu Hagané, 1977, 63: 772
野原 清彦, 小野 寛, 大橋 延夫. 準安定オーステナイトステンレス鋼における加工誘起マルテンサイト変態の組成および結晶粒度依存性 [J]. 鉄と鋼, 1997, 63: 772
43 Hedayati A, Najafizadeh A, Kermanpur A, et al. The effect of cold rolling regime on microstructure and mechanical properties of AISI 304L stainless steel [J]. J. Mater. Process. Technol., 2010, 210: 1017
44 Mahmoudiniya M, Kheirandish S, Asadiasadabad M. The effect of cold rolling on microstructure and mechanical properties of a new Cr-Mn austenitic stainless steel in comparison with AISI 316 stainless steel [J]. Trans. Indian Inst. Met., 2017, 70: 1251
45 Solomon N, Solomon I. Deformation induced martensite in AISI 316 stainless steel [J]. Rev. Metal., 2010, 46: 121
46 Sohrabi M J, Naghizadeh M, Mirzadeh H. Deformation-induced martensite in austenitic stainless steels: A review [J]. Arch. Civil Mech. Eng., 2020, 20: 124
47 Zhao J Q, Tian H, Wang Z, et al. FCC-to-HCP phase transformation in CoCrNi x medium-entropy alloys [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1151
48 Laplanche G, Gadaud P, Bärsch C, et al. Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy [J]. J. Alloys Compd., 2018, 746: 244
49 Tian Y, Gorbatov O I, Borgenstam A, et al. Deformation microstructure and deformation-induced martensite in austenitic Fe-Cr-Ni alloys depending on stacking fault energy [J]. Metall. Mater. Trans., 2017, 48A: 1
50 Das A, Sivaprasad S, Ghosh M, et al. Morphologies and characteristics of deformation induced martensite during tensile deformation of 304 LN stainless steel [J]. Mater. Sci. Eng., 2008, A486: 283
51 Pierce D T, Jiménez J A, Bentley J, et al. The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe-Mn-Al-Si steels during tensile deformation [J]. Acta Mater., 2015, 100: 178
52 Song H, Yang J, Jo Y H, et al. Excellent combination of cryogenic-temperature strength and ductility of high-entropy-alloy-cored multi-layered sheet [J]. J. Alloys Compd., 2019, 797: 465
53 Lee Y K, Lee S J, Han J. Critical assessment 19: Stacking fault energies of austenitic steels [J]. Mater. Sci. Technol., 2016, 32: 1
54 Tian Y, Borgenstam A, Hedström P. Comparing the deformation-induced martensitic transformation with the athermal martensitic transformation in Fe-Cr-Ni alloys [J]. J. Alloys Compd., 2018, 766: 131
55 Wang J L, Huang M H, Hu J, et al. EBSD investigation of the crystallographic features of deformation-induced martensite in stainless steel [J]. J. Mater. Sci. Technol., 2021, 69: 148
doi: 10.1016/j.jmst.2020.08.023
[1] ZHANG Xingxing, LUTZ Andreas, GAN Weimin, MAAWAD Emad, KRIELE Armin. Effect of Annealing Heat Treatment on the Macroscopic and Microscopic Deformation Behavior of Additively Manufactured AlSi10Mg Alloy[J]. 金属学报, 2024, 60(8): 1091-1099.
[2] MENG Yujia, XI Tong, YANG Chunguang, ZHAO Jinlong, ZHANG Xinrui, YU Yingjie, YANG Ke. Effect of Gallium Addition on Mechanical and Antibacterial Properties of 304L Stainless Steel[J]. 金属学报, 2024, 60(7): 890-900.
[3] YANG Ruize, ZHAI Ruzong, REN Shaofei, SUN Mingyue, XU Bin, QIAO Yanxin, YANG Lanlan. Evolution and Healing Mechanism of 1Cr22Mn16N High Nitrogen Austenitic Stainless Steel Interface Microstructure During Plastic Deformation Bonding[J]. 金属学报, 2024, 60(7): 915-925.
[4] XIE Liwen, ZHANG Lilong, LIU Yanyan, ZHANG Mingyang, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication and Mechanical Properties of Bioinspired Mg-Based Composites Reinforced by Stainless Steel Fibers[J]. 金属学报, 2024, 60(6): 760-769.
[5] LI Kangjie, SUN Zeyu, HE Bei, TIAN Xiangjun. Microstructure and Hardness of Al-Cu-Li Alloy Fabricated by Arc Additive Manufacturing Based on In Situ Metallurgy of Molten Pool[J]. 金属学报, 2024, 60(5): 661-669.
[6] ZENG Li, WANG Guilan, ZHANG Haiou, ZHAI Wenzheng, ZHANG Yong, ZHANG Mingbo. Microstructure and Mechanical Properties of GH4169D Superalloy Fabricated by Hybrid Arc and Micro-Rolling Additive Manufacturing[J]. 金属学报, 2024, 60(5): 681-690.
[7] LIU Zhuangzhuang, DING Minglu, XIE Jianxin. Advancements in Digital Manufacturing for Metal 3D Printing[J]. 金属学报, 2024, 60(5): 569-584.
[8] JIANG Haowen, PENG Wei, FAN Zengwei, WANG Yangxin, LIU Tengshi, DONG Han. Effect of Ag on Microstructure and Mechanical Properties of Austenitic Stainless Steel[J]. 金属学报, 2024, 60(4): 434-442.
[9] SUN Laibo, HUANG Lujun, HUANG Ruisheng, XU Kai, WU Pengbo, LONG Weimin, JIANG Fengchun, FANG Naiwen. Progress in the Effect of Ultrasonic Impact Treatment on Microstructure Improvement and Strengthening Mechanism in Additive Manufacturing[J]. 金属学报, 2024, 60(3): 273-286.
[10] CHEN Shenghu, WANG Qiyu, JIANG Haichang, RONG Lijian. Effect of δ-Ferrite on Hot Deformation and Recrystallization of 316KD Austenitic Stainless Steel for Sodium-Cooled Fast Reactor Application[J]. 金属学报, 2024, 60(3): 367-376.
[11] ZHANG Nan, ZHANG Haiwu, WANG Miaohui. Tensile Mechanical Properties of Micro-Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2024, 60(2): 211-219.
[12] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[13] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[14] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[15] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
No Suggested Reading articles found!