Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (8): 1031-1042    DOI: 10.11900/0412.1961.2024.00059
Research paper Current Issue | Archive | Adv Search |
Impact of Cryogenic Cycling on the Macro and Microscopic Residual Stress in SiC/Al Composites
GU Liming1,2, FENG Xiaoming1,2, YU Zhao1,2, ZHANG Junfan1(), LIU Zhenyu1, HE Lunhua3,4,5, LU Huaile3,6, LI Xiaohu3, WANG Chen3, ZHANG Xiaodong3, XIAO Bolv1, MA Zongyi1
1 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 Spallation Neutron Source Science Center, Dongguan 523803, China
4 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
5 Songshan Lake Materials Laboratory, Dongguan 523808, China
6 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Cite this article: 

GU Liming, FENG Xiaoming, YU Zhao, ZHANG Junfan, LIU Zhenyu, HE Lunhua, LU Huaile, LI Xiaohu, WANG Chen, ZHANG Xiaodong, XIAO Bolv, MA Zongyi. Impact of Cryogenic Cycling on the Macro and Microscopic Residual Stress in SiC/Al Composites. Acta Metall Sin, 2024, 60(8): 1031-1042.

Download:  HTML  PDF(4474KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Aluminum-based silicon carbide (SiC/Al) composites are widely used in the field of precision optics by virtue of their high specific modulus, high specific strength, and excellent dimensional stability. The dimensional stability of these composites is primarily influenced by macroscopic and microscopic residual stresses induced during the heat treatment process. This study employed neutron diffraction and finite element method (FEM) to investigate the impact of cryogenic cycle treatment on both macroscopic and microscopic residual stresses within the 35%SiC/6092Al composite material in the annealed state. The results of this study will clarify the methods and effects of reducing the residual stress and improving the dimensional stability of precision optical parts. The study focused on the influencing factors such as the number of cryogenic cycles, sample size, reinforcement particle size, and temperature difference of cryogenic cycles. The results show that the deep cryogenic cycles can remarkably reduce the internal stress of SiC/Al composites in the annealed state; as the number of cryogenic cycles increases, the internal stress reduction effect of a single cycle weakens. The cryogenic cycles primarily induce plastic strain in the matrix around particles, thereby influencing the internal stress between the particles and the surrounding matrix. No significant relationship is found between cryogenic cycles and external dimensions. Moreover, the cryogenic cycle barely increases the macroscopic stress of the annealed sample. For composites with equal volume fraction of SiC particles, the reduction in the internal stress after multiple cryogenic cycles is the same regardless of the SiC size. Moreover, the effect of multiple cryogenic cycles on the reduction in internal stress has little to do with the cryogenic cycle temperature difference. Cryogenic cycles at temperatures ranges of 100~-196°C and 200~-196°C exhibit almost identical alterations in internal stress.

Key words:  cryogenic cycle      neutron diffraction      residual stress      finite element method      representative volume element     
Received:  29 February 2024     
ZTFLH:  TB333  
Fund: National Key Research and Development Program of China(2022YFB3705705);National Natural Science Foundation of China(52192594);National Natural Science Foundation of China(51931009);Chinese Academy of Sciences High-Performance Engineering Materials Institutional Platform(JZHKYPT-2021-01);Youth Innovation Promotion Association, CAS(2020197)
Corresponding Authors:  ZHANG Junfan, associate professor, Tel: (024)83970048, E-mail: jfzhang@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00059     OR     https://www.ams.org.cn/EN/Y2024/V60/I8/1031

Fig.1  Neutron diffraction stress measurement site graphic and dimensional graphic (a), and neutron diffraction light path diagram (b) (ND—normal direction, RD—radial direction)
Fig.2  Representative volume element of 35%SiC/Al composites
(a) reinforcement particles (b) matrix and reinforcement particles
PhaseParameterValueUnit
AlConductivity174.57[30]mJ·(s·mm·oC)-1
Young's modulus68.00GPa
Poisson's ratio0.33-
Thermal expansion coefficient2.30 × 10-5K-1
Yield stress200MPa
SiCConductivity120.00mJ·(s·mm·℃)-1
Young's modulus415.00GPa
Poisson's ratio0.17-
Table 1  Material parameters used in numerical simulations
Fig.3  SEM images of initial annealed SiC/6092Al composites with the SiC particle sizes of 7 μm (a) and 14 μm (b)
Fig.4  Sample size and stress measurement locations S1-S14 (a), and results of macroscopic stress (b), Al phase stress (c), and SiC phase stress (d)
Fig.5  Al internal stresses (a, d, g), SiC internal stresses (b, e, h), and macroscopic stresses (c, f, i) of D120 sample in different cryogenic cycles (a-c) P1 (d-f) P2 (g-i) P3
Fig.6  Internal stresses of Al phase (a-c) and SiC phase (d-f) of D120 sample before and after cryogenic cycles
(a, d) annealed stress distributions
(b, e) stress distributions of 1 cryogenic cyc
(c, f) average stress diagrams of different cryogenic cycles
Fig.7  Distributions of equivalent plastic strains (PEEQ) in Al phase after different cryogenic cycles of D120 sample
(a-g) annealed state (a) and 1-6 cryogenic cyc, respectively (b-g)
(h) comparison of equivalent plastic strains in matrix with different number of cryogenic cycles
Fig.8  Al internal stresses (a, b), SiC internal stresses (c, d), and macroscopic stresses (e, f) in different sample sizes at annealed state (a, c, e) and 6 cryogenic cyc (b, d, f)
Fig.9  Al internal stresses (a, b), SiC internal stresses (c, d), and macroscopic stresses (e, f) in different SiC particle sizes at 7 μm SiC (a, c, e) and 14 μm SiC (b, d, f)
1 Miracle D B. Metal matrix composites—From science to technological significance [J]. Compos. Sci. Technol., 2005, 65: 2526
2 Cheng S Y, Cao Q, Bao J X, et al. Research and development of medium/high volume fraction SiCp/Al composites [J]. Chin. Opt., 2019, 12: 1064
程思扬, 曹 琪, 包建勋 等. 中高体积分数SiCp/Al复合材料研究进展 [J]. 中国光学, 2019, 12: 1064
3 Rawal S P. Metal-matrix composites for space applications [J]. JOM, 2001, 53(4): 14
4 Rajak D K, Pagar D D, Kumar R, et al. Recent progress of reinforcement materials: A comprehensive overview of composite materials [J]. J. Mater. Res. Technol., 2019, 8: 6354
5 Withers P J, Bhadeshia H K D H. Residual stress. Part 2—Nature and origins [J]. Mater. Sci. Technol., 2001, 17: 366
6 Withers P J. Residual stress and its role in failure [J]. Rep. Prog. Phys., 2007, 70: 2211
7 Wu G H, Qiao J, Jiang L T. Research progress on principle of dimensional stability and stabilization design of Al and its composites [J]. Acta Metall. Sin., 2019, 55: 33
doi: 10.11900/0412.1961.2018.00482
武高辉, 乔 菁, 姜龙涛. Al及其复合材料尺寸稳定性原理与稳定化设计研究进展 [J]. 金属学报, 2019, 55: 33
doi: 10.11900/0412.1961.2018.00482
8 Gong D, Cao Y F, Qian J R, et al. Microstructural evolution and dimensional stability of 45vol% SiC/Al composites under long-term aging [J]. J. Alloys Compd., 2023, 938: 168536
9 Gong D, Zhu M, Cao Y F, et al. Revealing the mechanism of internal stress on dimensional stability in SiC/Al composites under long-term thermal exposure [J]. Vacuum, 2023, 209: 111786
10 Qu S G, Lou H S, Li X Q, et al. Effect of heat-treatment on stress relief and dimensional stability behavior of SiCp/Al composite with high SiC content [J]. Mater. Des., 2015, 86: 508
11 Wang K, Li W F, Jin S X, et al. Effect of thermal shock induced dislocation multiplication on the thermal conductivity of 60 vol% SiCp/Al-7Si composites [J]. Compos. Commun., 2023, 39: 101554
12 Liu J Q, Wang H M, Li G R, et al. Microstructure and improved plasticity of (FeCoNi1.5CrCu)p/Al composites subject to adjusted deep cryogenic treatment (DCT) [J]. J. Alloys Compd., 2022, 895: 162690
13 Yao E Z, Zhang H J, Ma K, et al. Effect of deep cryogenic treatment on microstructures and performances of aluminum alloys: A review [J]. J. Mater. Res. Technol., 2023, 26: 3661
14 Evsevleev S, Sevostianov I, Mishurova T, et al. Explaining deviatoric residual stresses in aluminum matrix composites with complex microstructure [J]. Metall. Mater. Trans., 2020, 51A: 3104
15 Withers P J, Bhadeshia H K D H. Residual stress. Part 1—Measurement techniques [J]. Mater. Sci. Technol., 2001, 17: 355
16 Rossini N S, Dassisti M, Benyounis K Y, et al. Methods of measuring residual stresses in components [J]. Mater. Des., 2012, 35: 572
17 Withers P J. Mapping residual and internal stress in materials by neutron diffraction [J]. C. R. Phys., 2007, 8: 806
18 Fernández R, Bruno G, González-Doncel G. Correlation between residual stresses and the strength differential effect in PM 6061Al-15 vol% SiCw composites: Experiments, models and predictions [J]. Acta Mater., 2004, 52: 5471
19 Fitzpatrick M E, Hutchings M T, Withers P J. Separation of macroscopic, elastic mismatch and thermal expansion misfit stresses in metal matrix composite quenched plates from neutron diffraction measurements [J]. Acta Mater., 1997, 45: 4867
20 Zhang X X, Ni D R, Xiao B L, et al. Determination of macroscopic and microscopic residual stresses in friction stir welded metal matrix composites via neutron diffraction [J]. Acta Mater., 2015, 87: 161
21 Balokhonov R, Romanova V, Zinovieva O, et al. Microstructure-based analysis of residual stress concentration and plastic strain localization followed by fracture in metal-matrix composites [J]. Eng. Fract. Mech., 2022, 259: 108138
22 Sharma N K. Thermo-mechanical analysis of uniform, clustered and interpenetrating phase particulate composites using finite element method [J]. J. Therm. Anal. Calorim., 2023, 148: 5967
23 Chen J, Kang L, Lu H L, et al. The general purpose powder diffractometer at CSNS [J]. Physica, 2018, 551B: 370
24 Li S L, Li Y, Wang Y k, et al. Multiscale residual stress evaluation of engineering materials/components based on neutron and synchrotron radiation technology [J]. Acta Metall. Sin., 2023, 59: 1001
doi: 10.11900/0412.1961.2023.00157
李时磊, 李 阳, 王友康 等. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价 [J]. 金属学报, 2023, 59: 1001
doi: 10.11900/0412.1961.2023.00157
25 Hao J Z, Tan Z J, Lu H L, et al. Residual stress measurement system of the general purpose powder diffractometer at CSNS [J]. Nucl. Instrum. Methods Phys. Res., 2023, 1055A: 168532
26 Hutchings M T, Krawitz A D. Measurement of Residual and Applied Stress Using Neutron Diffraction [M]. Dordrecht: Springer, 1992: 6
27 Hutchings M T, Withers P J, Holden T M, et al. Introduction to the Characterization of Residual Stress by Neutron Diffraction [M]. Boca Raton: Taylor & Francis, 2005: 299
28 Zhang J F, Andrä H, Zhang X X, et al. An enhanced finite element model considering multi strengthening and damage mechanisms in particle reinforced metal matrix composites [J]. Compos. Struct., 2019, 226: 111281
29 Zhang J F, Zhang X X, Andrä H, et al. A fast numerical method of introducing the strengthening effect of residual stress and strain to tensile behavior of metal matrix composites [J]. J. Mater. Sci. Technol., 2021, 87: 167
doi: 10.1016/j.jmst.2021.01.079
30 Xu Y B, Tanaka Y, Goto M, et al. Thermal conductivity of SiC fine particles reinforced Al alloy matrix composite with dispersed particle size [J]. J. Appl. Phys., 2004, 95: 722
31 Deng K K, Wang X J, Wu Y W, et al. Effect of particle size on microstructure and mechanical properties of SiCp/AZ91 magnesium matrix composite [J]. Mater. Sci. Eng., 2012, A543: 158
32 Zhang J F, Zhang X X, Wang Q Z, et al. Simulation of anisotropic load transfer and stress distribution in SiCp/Al composites subjected to tensile loading [J]. Mech. Mater., 2018, 122: 96
33 Chen N, Zhang H X, Gu M Y, et al. Effect of thermal cycling on the expansion behavior of Al/SiCp composite [J]. J. Mater. Process. Technol., 2009, 209: 1471
34 Hu D Y, Tian T Y, Wang X, et al. Surface hardening analysis for shot peened GH4720Li superalloy using a DEM-FEM coupling RV simulation method [J]. Int. J. Mech. Sci., 2021, 209: 106689
35 Liu S, Fang G D, Fu M Q, et al. A coupling model of element-based peridynamics and finite element method for elastic-plastic deformation and fracture analysis [J]. Int. J. Mech. Sci., 2022, 220: 107170
36 Song P, Yabuuchi K, Spätig P. Insights into hardening, plastically deformed zone and geometrically necessary dislocations of two ion-irradiated FeCrAl(Zr)-ODS ferritic steels: A combined experimental and simulation study [J]. Acta Mater., 2022, 234: 117991
37 Wang Z Y, Cochrane C, Skippon T, et al. Dislocation evolution at a crack-tip in a hexagonal close packed metal under plane-stress conditions [J]. Acta Mater., 2019, 164: 25
38 Zhu S Z, Wang D, Xiao B L, et al. Suppressed negative effects of natural aging by pre-aging in SiCp/6092Al composites [J]. Composites, 2021, 212B: 108730
39 Samuel A, Prabhu K N. Residual stress and distortion during quench hardening of steels: A review [J]. J. Mater. Eng. Perform., 2022, 31: 5161
40 Sonar T, Lomte S, Gogte C. Cryogenic treatment of metal—A review [J]. Mater. Today: Proc., 2018, 5: 25219
[1] ZHU Guijie, WANG Siqing, ZHA Min, LI Meijuan, SUN Kai, CHEN Dongfeng. Effect of Rare Earth Element Ce on the Bulk Texture and Mechanical Anisotropy of As-Extruded Mg-0.3Al- 0.2Ca-0.5Mn Alloy Sheets[J]. 金属学报, 2024, 60(8): 1079-1090.
[2] ZHOU Mu, WANG Qian, WANG Yanxu, ZHAI Zirong, HE Lunhua, LI Bing, MA Yingjie, LEI Jiafeng, YANG Rui. Effect of Prewelding Pretreatment on Welding Residual Stress of Titanium Alloy Thick Plate[J]. 金属学报, 2024, 60(8): 1064-1078.
[3] LI Biao, ZHANG Long, YAN Tingyi, FU Huameng, YUAN Xudong, WEN Mingyue, ZHANG Hongwei, LI Hong, ZHANG Haifeng. Effects of Heat Treatment Processes and W Wire Properties on Residual Stress in W Wire Reinforced Zr-Based Metallic Glass Composites[J]. 金属学报, 2024, 60(8): 1055-1063.
[4] WANG Haoyu, LÜ Xirui, CHEN Qi, XIONG Ying, LUO Zhixin, ZHANG Jie, WANG Jingyang. Neutron Pair Distribution Function Analysis to the Local Structure of High-Entropy RE2SiO5 Environmental Barrier Coating[J]. 金属学报, 2024, 60(8): 1130-1140.
[5] LIN Hao, LI Jian, YANG Zhaolong, ZHONG Shengyi. Recent Progress in Stress Analysis Technology and Application of Neutron Diffraction[J]. 金属学报, 2024, 60(8): 1017-1030.
[6] XIONG Yi, LUAN Zewei, MA Yunfei, LI Yong, ZHA Xiaoqin. Effect of Surface Nanocrystallization Induced by Supersonic Fine Particles Bombardment on Corrosion Fatigue Behavior of 300M Steel[J]. 金属学报, 2024, 60(5): 627-638.
[7] YANG Junjie, ZHANG Changsheng, LI Hongjia, XIE Lei, WANG Hong, SUN Guang'ai. Effect of Tension-Torsion Coupled Loading on the Mechanical Properties and Deformation Mechanism of GH4169 Superalloys[J]. 金属学报, 2024, 60(1): 30-42.
[8] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[9] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[10] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[11] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[12] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[13] LU Haifei, LV Jiming, LUO Kaiyu, LU Jinzhong. Microstructure and Mechanical Properties of Ti6Al4V Alloy by Laser Integrated Additive Manufacturing with Alternately Thermal/Mechanical Effects[J]. 金属学报, 2023, 59(1): 125-135.
[14] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
[15] GAO Yubi, DING Yutian, LI Haifeng, DONG Hongbiao, ZHANG Ruiyao, LI Jun, LUO Quanshun. Effect of Deformation Rate on the Elastic-Plastic Deformation Behavior of GH3625 Alloy[J]. 金属学报, 2022, 58(5): 695-708.
No Suggested Reading articles found!