|
|
Recent Progress in Stress Analysis Technology and Application of Neutron Diffraction |
LIN Hao1,2, LI Jian3, YANG Zhaolong3, ZHONG Shengyi2,4() |
1 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2 National Key Laboratory of Neutron Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China 3 Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999, China 4 SJTU Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China |
|
Cite this article:
LIN Hao, LI Jian, YANG Zhaolong, ZHONG Shengyi. Recent Progress in Stress Analysis Technology and Application of Neutron Diffraction. Acta Metall Sin, 2024, 60(8): 1017-1030.
|
Abstract Neutron diffraction is an advanced experimental technology relying on the neutron source scientific device, which can obtain statistical information of the internal microstructure of materials in a non-destructive manner. It is an indispensable characterization method for establishing the intrinsic relationship between the microstructure, mesoscopic, and macroscopic structure and performance of materials. At the same time, it is an important method for quantitative non-destructive evaluation of residual stress inside key components of major technologies and equipment. This article briefly introduces the measurement principle and basic methods of neutron diffraction technology, elaborates on the research progress of this technology in material foundation and cutting-edge exploration, and evaluates its position and role in engineering component design, manufacturing, service, and safety assessment. Finally, based on the common requirements for the development of new materials and processes, the development potential of neutron diffraction technology for cross scale and multi parameter analysis is discussed, as well as its future development direction in high-throughput characterization.
|
Received: 01 March 2024
|
|
Fund: National Key Research and Development Program of China(2021YFA1600900);Ocean Equipment Forward Innovation Joint Fund Project(ZCJDQZ202303A01);New Teacher Initiation Program(23X010502174) |
Corresponding Authors:
ZHONG Shengyi, professor, Tel: (021)54740057, E-mail: shengyi.zhong@sjtu.edu.cn
|
1 |
Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
doi: 10.11900/0412.1961.2020.00199
|
|
宿彦京, 付华栋, 白 洋 等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
doi: 10.11900/0412.1961.2020.00199
|
2 |
Fish J, Wagner G J, Keten S. Mesoscopic and multiscale modelling in materials [J]. Nat. Mater., 2021, 20: 774
doi: 10.1038/s41563-020-00913-0
pmid: 34045697
|
3 |
Huang X X, Wu G L, Zhong X Y, et al. Multi-dimensional multi-scale and high-flux characterization techniques for advanced materials [J]. J. Chin. Electron Micros. Soc., 2016, 35: 567
|
|
黄晓旭, 吴桂林, 钟虓龚 等. 先进材料多维多尺度高通量表征技术 [J]. 电子显微学报, 2016, 35: 567
|
4 |
Yu Q K, Jauregui L A, Wu W, et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition [J]. Nat. Mater., 2011, 10: 443
doi: 10.1038/nmat3010
pmid: 21552269
|
5 |
Marola S, Bosia S, Veltro A, et al. Residual stresses in additively manufactured AlSi10Mg: Raman spectroscopy and X-ray diffraction analysis [J]. Mater. Des., 2021, 202: 109550
|
6 |
Kamaya M, Wilkinson A J, Titchmarsh J M. Measurement of plastic strain of polycrystalline material by electron backscatter diffraction [J]. Nucl. Eng. Des., 2005, 235: 713
|
7 |
Zhang Y B, Fan G H. Three-dimensional X-ray diffraction technique for metals science [J]. Mater. China, 2017, 36: 181
|
|
张玉彬, 范国华. 三维X射线衍射技术在金属材料研究中的应用 [J]. 中国材料进展, 2017, 36: 181
|
8 |
Hutchings M T, Krawitz A D. Measurement of Residual and Applied Stress Using Neutron Diffraction [M]. Dordrecht: Springer, 1992: 1
|
9 |
Fitzpatrick M E, Lodini A. Analysis of residual stress by diffraction using neutron and synchrotron radiation [M]. London: Taylor & Francis, 2003: 1
|
10 |
Pintschovius L, Jung V, Macherauch E, et al. Residual stress measurements by means of neutron diffraction [J]. Mater. Sci. Eng., 1983, 61: 43
|
11 |
Ren Y. High-energy synchrotron X-ray diffraction and its application to in situ structural phase-transition studies in complex sample environments [J]. JOM, 2012, 64: 140
|
12 |
Jia N, Cong Z H, Sun X, et al. An in situ high-energy X-ray diffraction study of micromechanical behavior of multiple phases in advanced high-strength steels [J]. Acta Mater., 2009, 57: 3965
|
13 |
Jia N, Nie Z H, Ren Y, et al. Formation of deformation textures in face-centered-cubic materials studied by in-situ high-energy X-ray diffraction and self-consistent model [J]. Metall. Mater. Trans., 2010, 41: 1246
|
14 |
Guan H D, Li C J, Gao P, et al. Research progress of high-throughput material synthesis and characterization [J]. Rare Met. Mater. Eng., 2019, 48: 4131
|
|
关洪达, 李才巨, 高 鹏 等. 材料高通量制备与表征技术研究进展 [J]. 稀有金属材料与工程, 2019, 48: 4131
|
15 |
Wu S C, Wu Z K, Kang G Z, et al. Research progress on multi-dimensional and multi-scale high-throughput characterization for advanced materials [J]. J. Mech. Eng., 2021, 57(16): 37
doi: 10.3901/JME.2021.16.037
|
|
吴圣川, 吴正凯, 康国政 等. 先进材料多维多尺度高通量表征研究进展 [J]. 机械工程学报, 2021, 57(16): 37
doi: 10.3901/JME.2021.16.037
|
16 |
Capello E. Residual stresses in turning: Part I: influence of process parameters [J]. J. Mater. Process. Technol., 2005, 160: 221
|
17 |
Alderliesten R C. Critical review on the assessment of fatigue and fracture in composite materials and structures [J]. Eng. Fail. Anal., 2013, 35: 370
|
18 |
Wissink M L, Chen Y, Frost M J, et al. Operando measurement of lattice strain in internal combustion engine components by neutron diffraction [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 33061
doi: 10.1073/pnas.2012960117
pmid: 33376215
|
19 |
Hansen T C, Henry P F, Fischer H E, et al. The D20 instrument at the ILL: A versatile high-intensity two-axis neutron diffractometer [J]. Meas. Sci. Technol., 2008, 19: 034001
|
20 |
Hoelzel M, Senyshyn A, Juenke N, et al. High-resolution neutron powder diffractometer SPODI at research reactor FRM II [J]. Nucl. Instrum. Methods Phys. Res., 2012, 667A: 32
|
21 |
Paradowska A M, Baczmańsk A, Zhang S Y, et al. In-situ neutron diffraction studies of various metals on Engin-X at ISIS [J]. CAMP-ISIJ, 2011, 24: 539
|
22 |
Kirstein O, Garbe U, Luzin V. KOWARI-OPAL's new stress diffractometer for the engineering community: Capabilities and first results [J]. Mater. Sci. Forum, 2010, 652: 86
|
23 |
Ishigaki T, Hoshikawa A, Yonemura M, et al. IBARAKI materials design diffractometer (iMATERIA)-Versatile neutron diffractometer at J-PARC [J]. Nucl. Instrum. Methods Phys. Res., 2009, 600A: 189
|
24 |
Li J, Wang H, Sun G A, et al. Neutron diffractometer RSND for residual stress analysis at CAEP [J] Nucl. Instrum. Methods Phys. Res., 2015, 783A: 76
|
25 |
Li T F, Wu M M, Jiao X S, et al. Current status and future prospect of neutron facilities at China advanced research reactor [J]. Nucl. Phys. Rev., 2020, 37: 364
|
|
李天富, 武梅梅, 焦学胜 等. 中国先进研究堆中子科学平台发展现状及展望 [J]. 原子核物理评论, 2020, 37: 364
|
26 |
Cheng H, Zhang W, Wang F W, et al. Applications of the China spallation neutron source [J]. Physics, 2019, 48: 701
|
|
程 贺, 张 玮, 王芳卫 等. 中国散裂中子源的多学科应用 [J]. 物理, 2019, 48: 701
|
27 |
Gao J B, Zhang S Y, Zhou L, et al. Novel engineering materials diffractometer fabricated at the China Spallation Neutron Source [J]. Nucl. Instrum. Methods Phys. Res., 2022, 1034A: 166817
|
28 |
Wang B, Zhong S, Lin H, et al. Design and performance of the high-resolution stress and texture neutron diffractometer HETU [J]. J. Appl. Cryst., 2023, 56: 1485
|
29 |
Wang B, Zhong S, Lin H, et al. HETU: A new high-resolution stress and texture neutron diffractometer at China Mianyang Research Reactor [J]. J. Appl. Cryst., 2023, 56: 1674
|
30 |
MacEwen S R, Faber J, Turner A P L. The use of time-of-flight neutron diffraction to study grain interaction stresses [J]. Acta Metall., 1983, 31: 657
|
31 |
Roters F, Eisenlohr P, Bieler T R, et al. Crystal Plasticity Finite Element Methods: In Materials Science and Engineering [M]. Weinheim: Wiley-VCH, 2010: 95
|
32 |
Wang Y D, Peng R L, McGreevy R L. A novel method for constructing the mean field of grain-orientation-dependent residual stress [J]. Philos. Mag. Lett., 2001, 81: 153
|
33 |
Paradowska A, Finlayson T R, Price J W H. et al. Investigation of reference samples for residual strain measurements in a welded specimen by neutron and synchrotron X-ray diffraction [J]. Physica, 2006, 385-386B: 904
|
34 |
Tomota Y, Lukáš P, Neov D, et al. In situ neutron diffraction during tensile deformation of a ferrite-cementite steel [J]. Acta Mater., 2003, 51: 805
|
35 |
Jia N, Peng R L, Wang Y D, et al. Interactions between the phase stress and the grain-orientation-dependent stress in duplex stainless steel during deformation [J]. Acta Mater., 2006, 54: 3907
|
36 |
Hao S J, Jiang D Q, Cui L S, et al. Phase-stress partition and stress-induced martensitic transformation in NbTi/NiTi nanocomposite [J]. Appl. Phys. Lett., 2011, 99: 084103
|
37 |
Hao S J, Cui L S, Jiang D Q, et al. A transforming metal nanocomposite with large elastic strain, low modulus, and high strength [J]. Science, 2013, 339: 1191
doi: 10.1126/science.1228602
pmid: 23471404
|
38 |
Maiti S, Steurer W. Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy [J]. Acta Mater., 2016, 106: 87
|
39 |
Zhao P, Chen B, Kelleher J, et al. High-cycle-fatigue induced continuous grain growth in ultrafine-grained titanium [J]. Acta Mater., 2019, 174: 29
doi: 10.1016/j.actamat.2019.05.038
|
40 |
Zhao P C, Chen B, Zheng Z G, et al. Microstructure and texture evolution in a post-dynamic recrystallized titanium during annealing, monotonic and cyclic loading [J]. Metall. Mater. Trans., 2021, 52A: 394
|
41 |
Zhang X X, Wang D, Xiao B L, et al. Enhanced multiscale modeling of macroscopic and microscopic residual stresses evolution during multi-thermo-mechanical processes [J]. Mater. Des., 2017, 115: 364
|
42 |
Zhang X X, Wu L H, Andrä H, et al. Effects of welding speed on the multiscale residual stresses in friction stir welded metal matrix composites [J]. J. Mater. Sci. Technol., 2019, 35: 824
doi: 10.1016/j.jmst.2018.11.005
|
43 |
Cong Z H, Jia N, Sun X, et al. Stress and strain partitioning of ferrite and martensite during deformation [J]. Metall. Mater. Trans., 2009, 40A: 1383
|
44 |
Aba-Perea P E, Pirling T, Preuss M. In-situ residual stress analysis during annealing treatments using neutron diffraction in combination with a novel furnace design [J]. Mater. Des., 2016, 110: 925
|
45 |
Yu D J, An K, Chen X, et al. Phase-specific deformation behavior of a NiAl-Cr(Mo) lamellar composite under thermal and mechanical loads [J]. J. Alloys Compd., 2016, 656: 481
|
46 |
Zhang X X, Xiao B L, Andrä H, et al. Multiscale modeling of macroscopic and microscopic residual stresses in metal matrix composites using 3D realistic digital microstructure models [J]. Compos. Struct., 2016, 137: 18
|
47 |
Shi Y J, Li S L, Lee T L, et al. In situ neutron diffraction study of a new type of stress-induced confined martensitic transformation in Fe22Co20Ni19Cr20Mn12Al7 high-entropy alloy [J]. Mater. Sci. Eng., 2020, A771: 138555
|
48 |
Woo W, Em V T, Kim E Y, et al. Stress-strain relationship between ferrite and martensite in a dual-phase steel studied by in situ neutron diffraction and crystal plasticity theories [J]. Acta Mater., 2012, 60: 6972
|
49 |
Lee C, Kim G, Chou Y, et al. Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy [J]. Sci. Adv., 2020, 6: eaaz4748
|
50 |
Ma Y S, He J Y, Zhou L, et al. Mechanical properties and impact energy release characteristics of Al0.5NbZrTi1.5Ta0.8Ce0.85 high-entropy alloy [J]. Mater. Res. Express, 2022, 9: 116510
|
51 |
Naeem M, He H Y, Zhang F, et al. Cooperative deformation in high-entropy alloys at ultralow temperatures [J]. Sci. Adv., 2020, 6: eaax4002
|
52 |
Pan Q S, Zhang L X, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374: 984
|
53 |
Zhai H Y, Liu C H, Shang X Q, et al. Measuring texture-component-dependent stress of CuZn39Pb2 by neutron diffraction [J]. Int. J. Mech. Sci., 2024, 270: 109109
|
54 |
Zhang X X, Zhang J F, Liu Z Y, et al. Microscopic stresses in carbon nanotube reinforced aluminum matrix composites determined by in-situ neutron diffraction [J]. J. Mater. Sci. Technol., 2020, 54: 58
doi: 10.1016/j.jmst.2020.04.016
|
55 |
Ghosh S, Rana V P S, Kain V, et al. Role of residual stresses induced by industrial fabrication on stress corrosion cracking susceptibility of austenitic stainless steel [J]. Mater. Des., 2011, 32: 3823
|
56 |
Yazdanpanah A, Franceschi M, Bergamo G, et al. On the exceptional stress corrosion cracking susceptibility of selective laser melted 316L stainless steel under the individual effect of surface residual stresses [J]. Eng. Fail. Anal., 2022, 136: 106192
|
57 |
García Navas V, Gonzalo O, Bengoetxea I. Effect of cutting parameters in the surface residual stresses generated by turning in AISI 4340 steel [J]. Int. J. Mach. Tools Manuf., 2012, 61: 48
|
58 |
Bussu G, Irving P E. The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminium joints [J]. Int. J. Fatigue, 2003, 25: 77
|
59 |
Webster G A, Ezeilo A N. Residual stress distributions and their influence on fatigue lifetimes [J]. Int. J. Fatigue, 2001, 23: 375
|
60 |
Hutchings M T, With P J, Holden, et al. Introduction to the Characterization of Residual Stress by Neutron Diffraction [M]. London: Taylor & Francis, 2005: 4
|
61 |
Guo J, Fu H Y, Pan B, et al. Recent progress of residual stress measurement methods: A review [J]. Chin. J. Aeronaut., 2021, 34: 54
|
62 |
Nishida M, Jing T, Muslih M R, et al. Residual stress measurement of titanium casting alloy by neutron diffraction [J]. AIP Conf. Proc., 2008, 989: 101
|
63 |
Pratihar S, Turski M, Edwards L, et al. Neutron diffraction residual stress measurements in a 316L stainless steel bead-on-plate weld specimen [J]. Int. J. Press. Vessels Pip., 2009, 86: 13
|
64 |
Zhang Z W. Study on the evolution of three-dimensional residual stress field in turbine discs by using neutron/X-ray diffraction and finite element method [D]. Beijing: University of Science & Technology Beijing, 2022
|
|
张哲维. 基于中子/X射线衍射与有限元法的涡轮盘模拟件三维残余应力场演变研究 [D]. 北京: 北京科技大学, 2022
|
65 |
Wang Z Q, Stoica A D, Ma D, et al. Diffraction and single-crystal elastic constants of Inconel 625 at room and elevated temperatures determined by neutron diffraction [J]. Mater. Sci. Eng., 2016, A674: 406
|
66 |
Wu E D, Li J C, Zhang J, et al. Neutron and X-Ray diffraction study of internal stress in thermomechanically fatigued single-crystal superalloy [J]. Metall. Mater. Trans., 2008, 39A: 3141
|
67 |
Pierret S, Evans A, Paradowska A M, et al. Combining neutron diffraction and imaging for residual strain measurements in a single crystal turbine blade [J]. NDT & E Int., 2012, 45: 39
|
68 |
Seo S, Huang E W, Woo W, et al. Neutron diffraction residual stress analysis during fatigue crack growth retardation of stainless steel [J]. Int. J. Fatigue, 2017, 104: 408
|
69 |
Li S L, Li Y, Wang Y K, et al. Multiscale residual stress evaluation of engineering materials/components based on neutron and synchrotron radiation technology [J]. Acta Metall. Sin., 2023, 59: 1001
doi: 10.11900/0412.1961.2023.00157
|
|
李时磊, 李 阳, 王友康 等. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价 [J]. 金属学报, 2023, 59: 1001
doi: 10.11900/0412.1961.2023.00157
|
70 |
Sasaki T, Takahashi S, Kanematsu Y, et al. Measurement of residual stresses in rails by neutron diffraction [J] Wear, 2008, 265: 1402
|
71 |
Zhou L, Zhang H, Qin T, et al. Gradient residual strain measurement procedure in surface impacted railway steel axles by using neutron scattering [J]. Metall. Mater. Trans., 2024, 55A: 2175
|
72 |
Jun T S, Hofmann F, Belnoue J, et al. Triaxial residual strains in a railway rail measured by neutron diffraction [J]. J. Strain Anal. Eng., 2009, 44: 563
|
73 |
Zhao J C. High-throughput experimental tools for the materials genome initiative [J]. Chin. Sci. Bull., 2014, 59: 1652
|
|
赵继成. 材料基因组计划中的高通量实验方法 [J]. 科学通报, 2013, 58: 3647
|
74 |
Liu C K, Li N, Zhao W X, et al. Requirements of microstructure and risidual stress evaluation of aeronautical materials for neutron scattering and synchrotron radiation techniques [J]. Fail. Anal. Prev., 2019, 14: 133
|
|
刘昌奎, 李 楠, 赵文侠 等. 航空材料组织与残余应力评价对中子散射与同步辐射技术的需求 [J]. 失效分析与预防, 2019, 14: 133
|
75 |
Wang H Z, Wang H, Ding H, et al. Progress in high-throughput materials synthesis and characterization [J]. Sci. Technol. Rev., 2015, 33(10): 31
doi: 10.3981/j.issn.1000-7857.2015.10.003
|
|
王海舟, 汪 洪, 丁 洪 等. 材料的高通量制备与表征技术 [J]. 科技导报, 2015, 33(10): 31
doi: 10.3981/j.issn.1000-7857.2015.10.003
|
76 |
Ioannidou C, Navarro-López A, Dalgliesh R M, et al. Phase-transformation and precipitation kinetics in vanadium micro-alloyed steels by in-situ, simultaneous neutron diffraction and SANS [J]. Acta Mater., 2021, 220: 117317
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|