Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (5): 569-584    DOI: 10.11900/0412.1961.2023.00416
Overview Current Issue | Archive | Adv Search |
Advancements in Digital Manufacturing for Metal 3D Printing
LIU Zhuangzhuang1,2,3(), DING Minglu1,2, XIE Jianxin1,2,3
1 Key Laboratory for Advanced Materials Processing (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2 Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
3 Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

LIU Zhuangzhuang, DING Minglu, XIE Jianxin. Advancements in Digital Manufacturing for Metal 3D Printing. Acta Metall Sin, 2024, 60(5): 569-584.

Download:  HTML  PDF(2427KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Digital manufacturing revolutionizes conventional manufacturing processes into digital models, enabling intelligent control over the entire production process to rapidly create products tailored to specific requirements. Metal three-dimensional (3D) printing, a complex physical process, is characterized by strong multiphysics interactions, highly time-varying disturbances, intrinsic nonlinear relationships, and multiple variables and objectives. Achieving full-process digital control in metal 3D printing has the potential to overcome current bottlenecks, such as inconsistent part quality and unstable performance, thereby advancing high-quality 3D printing technology. This work investigates metal 3D printing characteristics and fundamental digital manufacturing principles. It subsequently provides an overview of research progress in the digital manufacturing of metal 3D printing, encompassing three critical aspects: online monitoring of the 3D printing process, digital simulation, and the interaction between physical and information systems. Finally, the work discusses the future research focus of digital manufacturing in metal 3D printing, offering insights into its development prospects.

Key words:  3D printing      additive manufacturing      machine learning      digital manufacturing     
Received:  18 October 2023     
ZTFLH:  TG14  
Fund: National Key Research and Development Program of China(2022YFB4600302);National Natural Science Foundation of China(52090041);National Natural Science Foundation of China(52104368)
Corresponding Authors:  LIU Zhuangzhuang, associate professor, Tel: (010)62332253, E-mail: liuzhuangzhuang@ustb.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00416     OR     https://www.ams.org.cn/EN/Y2024/V60/I5/569

Fig.1  Schematic of laser powder bed fusion (L-PBF) process[13]
TypeObjectAdvantageDisadvantage
ProfilometerProfiling of powder bedEasy installationHigh cost
Infrared cameraThermal radiation of molten poolIntuitive results with rich information retrievalHigh resolution, high equipment cost
PyrometerThermal radiation of molten poolHigh accuracy and rapid responseHigh cost
High-speed cameraMolten pool morphology, thermal images, and geometric dimensionsLower cost and extended measurement rangeOptical filters required
Acoustic emissionDefectsHigh sensitivity, nondestructive monitoring, and low costLower accuracy in high-noise conditions
Synchrotron X-rayDynamic behavior of molten poolReal-time observationHigh cost, complex equipment, limited commercial viability
SpectrometerSpatteringWide measurement rangeHigh cost
Table 1  Common sensors for in-situ monitoring in metal 3D printing
Fig.2  Industrial camera monitoring powder bed spreading quality in L-PBF (Green represents part outline, other colors indicate various defects)[48]
Fig.3  Schematic of profilometer installed inside L-PBF building chamber[49]
Fig.4  Online monitoring of surface temperature distribution (a) and detected defects (b) in L-PBF components[50]
Fig.5  Schematic of colorimetric thermometer measuring surface radiative intensity in the laser-powder interaction zone during the L-PBF process[51]
Fig.6  Cross-sectional image of the sample and its corresponding relationship with acoustic emission waveforms in a single scan experiment of the L-PBF process[53]
Fig.7  Molten pool monitoring device (a) and schematics of two-dimensional signal processing for molten pool radiative intensity distribution (b-e)[54]
PurposeModelFeatureApplication
Calculation of heat, mass, and momentum transferPart scale heat conduction modelFourier heat conduction equation is solved either analytically in 1D or 2D or numerically in 3DTemperature fields; fusion zone geometry; cooling rates
Part scale heat transfer and fluid flowSolves 3D transient conservation equations of mass, momentum, and energyTemperature and velocity fields; fusion zone geometry; cooling rates; solidification parameters; lack of fusion
Part scale volume of fluid and level set methodsTracks the free surface of the molten pool; computationally intensive; accumulates errors and the calculated deposit shape and size often do not agree well with experiments3D deposit geometry; temperature and velocity fields; cooling rates; solidification parameters

Powder-scale models

Involves free surface boundary conditions treating thermodynamics, surface tension, phase transitions, and wetting; small timescale and length scale, computationally intensiveTemperature and velocity fields; track geometry; lack of fusion; spatter; surface roughness
Microstructure, nucleation, and grain growth predictionTTT-based, CCT-based, and JMA-based modelsBased on phase transformation kinetics during cooling; widely used for simulating phase transformations in steels and common alloys; high computational efficiency

Solid-state phase transformation kinetics

Monte Carlo methodA probabilistic approach of grain orientation change; provides grain size distribution with time; high computational efficiencyGrain growth; solidification structure; texture
Cellular automataSimulates growth of grain and subgrain structure during solidification; medium accuracy and computational efficiencySolidification structure; grain growth; texture

Phase field model

Simulates microstructural features and properties by calculating an order parameter based on free energy that represents the state of the entire microstructure; computationally intensiveNucleation; grain growth; evolution of phases; precipitate formation; solid-state phase transformation

Calculation of residual stresses and distortion

FEA-based thermomechanical models

Calculation of residual stresses and distortion FEA-based thermomechanical models solves 3D constitutive equations considering elastic, plastic, and thermal behavior; many software packages exist, and these are easy to implement and can handle intricate geometries; adaptive grid and inherent strain method are often used to increase calculation speed

Evolution of residual stress; strains; distortion; delamination; warping

Table 2  Summary of common numerical simulation models in metal additive manufacturing[58]
Fig.8  Original radiation data (a), images of the molten pool and spatters used for temperature feature extraction (b, c), and binarized images of the molten pool and spatters used for shape feature extraction (d, e)[77] (Red arrows refer to the Euclidean distances (d) measured from the center of the meltpool to edge pixels and ejecta pixels)
Fig.9  High-density parameters predicted by machine learning model[79]
Fig.10  Schematic of the closed-loop control system[85] (FLC—fuzzy logic controller, DNN—deep neural network, DT—decision tree, LR—logistic regression, RF—random forest, SVM—support vector machine, ML—machine learning)
1 Zhou J. Intelligent manufacturing—Main direction of "made in China 2025"[J]. China Mech. Eng., 2015, 26: 2273
周 济. 智能制造——"中国制造2025"的主攻方向[J]. 中国机械工程, 2015, 26: 2273
2 Kolade O, Owoseni A. Employment 5.0: The work of the future and the future of work[J]. Technol. Soc., 2022, 71: 102086
doi: 10.1016/j.techsoc.2022.102086
3 Zhou J, Zhou Y H, Wang B C, et al. Human-cyber-physical systems (HCPSs) in the context of new-generation intelligent manufacturing[J]. Engineering, 2019, 5: 624
doi: 10.1016/j.eng.2019.07.015
4 Lu Y Q, Zheng H, Chand S, et al. Outlook on human-centric manufacturing towards Industry 5.0[J]. J. Manuf. Syst., 2022, 62: 612
doi: 10.1016/j.jmsy.2022.02.001
5 Wang B C, Tao F, Fang X D, et al. Smart manufacturing and intelligent manufacturing: A comparative review[J]. Engineering, 2021, 7: 738
doi: 10.1016/j.eng.2020.07.017
6 Zhou J, Li P G, Zhou Y H, et al. Toward new-generation intelligent manufacturing[J]. Engineering, 2018, 4: 11
7 Zang J Y, Wang B C, Meng L, et al. Brief analysis on three basic paradigms of intelligent manufacturing[J]. Strategic Study CAE, 2018, 20(4): 13
doi: 10.15302/J-SSCAE-2018.04.003
臧冀原, 王柏村, 孟 柳 等. 智能制造的三个基本范式: 从数字化制造, “互联网+”制造到新一代智能制造[J]. 中国工程科学, 2018, 20(4): 13
8 Osterrieder P, Budde L, Friedli T. The smart factory as a key construct of industry 4.0: A systematic literature review[J]. Int. J. Prod. Econ., 2020, 221: 107476
doi: 10.1016/j.ijpe.2019.08.011
9 Tao F, Qi Q L. New IT driven service-oriented smart manufacturing: Framework and characteristics[J]. IEEE Trans. Syst. Man. Cybern. Syst., 2019, 49: 81
10 Tao F, Cheng J F, Qi Q L, et al. Digital twin-driven product design, manufacturing and service with big data[J]. Int. J. Adv. Manuf. Technol., 2017, 94: 3563
doi: 10.1007/s00170-017-0233-1
11 Tao F, Zhang M, Cheng J F, et al. Digital twin workshop: A new paradigm for future workshop[J]. Comput. Integr. Manuf. Syst., 2017, 23: 1
陶 飞, 张 萌, 程江峰 等. 数字孪生车间——一种未来车间运行新模式[J]. 计算机集成制造系统, 2017, 23: 1
12 Liu R H, Zhang N, Wu Y F. On thinking of constructing an industrial internet security protection system[J]. Cyber Secur. Data Governance, 2018, 37(1): 23
刘仁辉, 张 尼, 吴云峰. 构筑工业互联网安全防护体系 为推动先进制造业发展保驾护航[J]. 信息技术与网络安全, 2018, 37(1): 23
13 Chowdhury S, Yadaiah N, Prakash C, et al. Laser powder bed fusion: A state-of-the-art review of the technology, materials, properties & defects, and numerical modelling[J]. J. Mater. Res. Technol., 2022, 20: 2109
doi: 10.1016/j.jmrt.2022.07.121
14 Tofail S A M, Koumoulos E P, Bandyopadhyay A, et al. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities[J]. Mater Today, 2018, 21: 22
doi: 10.1016/j.mattod.2017.07.001
15 DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties[J]. Prog. Mater. Sci., 2018, 92: 112
doi: 10.1016/j.pmatsci.2017.10.001
16 Hassanin H, Finet L, Cox S C, et al. Tailoring selective laser melting process for titanium drug-delivering implants with releasing micro-channels[J]. Addit. Manuf., 2018, 20: 144
17 Pham M S, Dovgyy B, Hooper P A. Twinning induced plasticity in austenitic stainless steel 316L made by additive manufacturing[J]. Mater. Sci. Eng., 2017, A704: 102
18 Uriondo A, Esperon-Miguez M, Perinpanayagam S. The present and future of additive manufacturing in the aerospace sector: A review of important aspects[J]. Proc. Inst. Mech. Eng, 2015, 229G: 2132
19 Gao W, Zhang Y B, Ramanujan D, et al. The status, challenges, and future of additive manufacturing in engineering[J]. Comput. Aided Des., 2015, 69: 65
doi: 10.1016/j.cad.2015.04.001
20 Sun K, Wei T S, Ahn B Y, et al. 3D printing of interdigitated Li-ion microbattery architectures[J]. Adv. Mater., 2013, 25: 4539
doi: 10.1002/adma.v25.33
21 Guo N N, Leu M C. Additive manufacturing: Technology, applications and research needs[J]. Front. Mech. Eng., 2013, 8: 215
doi: 10.1007/s11465-013-0248-8
22 Bartolo P, Kruth J P, Silva J, et al. Biomedical production of implants by additive electro-chemical and physical processes[J]. CIRP Ann., 2012, 61: 635
doi: 10.1016/j.cirp.2012.05.005
23 Wei C, Li L. Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion[J]. Virtual Phys. Prototyp., 2021, 16: 347
doi: 10.1080/17452759.2021.1928520
24 Torre M, Giannitelli S M, Mauri E, et al. Chapter seven—Additive manufacturing of biomaterials[J]. Adv. Chem. Eng., 2021, 57: 233
25 Li N, Liu W, Wang Y, et al. Laser additive manufacturing on metal matrix composites: A review[J]. Chin. J. Mech. Eng., 2021, 34: 38
doi: 10.1186/s10033-021-00554-7
26 Sanjeeviprakash K, Kannan A R, Shanmugam N S. Additive manufacturing of metal-based functionally graded materials: Overview, recent advancements and challenges[J]. J. Braz. Soc. Mech. Sci. Eng., 2023, 45: 241
doi: 10.1007/s40430-023-04174-1
27 Goetz I K, Kaplan M, Hans M, et al. Reactive metal additive manufacturing: Surface near ZrN-metallic glass composite formation and mechanical properties[J]. Addit. Manuf., 2023, 66: 103457
28 Guerra C, Ramos-Grez J A, La Fé-Perdomo I, et al. Microstructure and mechanical properties of Cu-11Al-5Ni-4Fe wt% manufactured by LPBF[J]. Metals, 2023, 13: 459
doi: 10.3390/met13030459
29 Chen Y, Jian Z Y, Ren Y M, et al. Influence of TiB2 volume fraction on SiCp/AlSi10Mg composites by LPBF: Microstructure, mechanical, and physical properties[J]. J. Mater. Res. Technol., 2023, 23: 3697
doi: 10.1016/j.jmrt.2023.02.031
30 Li C X, Liu Y, Shu T, et al. Effect of solution heat treatment on microstructure, mechanical and electrochemical properties of hastelloy X fabricated by laser powder bed fusion[J]. J. Mater. Res. Technol., 2023, 24: 1499
doi: 10.1016/j.jmrt.2023.03.108
31 Yang K, Yang X, Zhang Z L, et al. Spall damage in laser-powder-bed-fusion manufactured Ti-6Al-4V: Mechanisms and microstructure effects[J]. J. Alloys Compd., 2023, 947: 169379
doi: 10.1016/j.jallcom.2023.169379
32 Liu B, Ding Y T, Xu J Y, et al. Outstanding strength-ductility synergy in Inconel 718 superalloy via laser powder bed fusion and thermomechanical treatment[J]. Addit. Manuf., 2023, 67: 103491
33 Guan J R, Wang Q P. Laser powder bed fusion of dissimilar metal materials: A review[J]. Materials, 2023, 16: 2757
doi: 10.3390/ma16072757
34 Zhang H B, Li J S, Li Y Q. Effect of powder recycling on the organization and mechanical properties of GH4169 alloy by laser metal deposition[J]. Coatings, 2023, 13: 659
doi: 10.3390/coatings13030659
35 Wu H L, Huang S H, Li Z S, et al. Optimization of microstructure and properties in U75V steel rail cladding layers manufactured by laser melting deposition and laser shock peening[J]. Opt. Laser Technol., 2023, 163: 109436
doi: 10.1016/j.optlastec.2023.109436
36 Preuß B, Lindner T, Uhlig T, et al. Microstructure evolution and wear resistance of the eutectic high-entropy alloy Al0.3CoCrFeNiNb0.5 produced by laser metal deposition[J]. Coatings, 2023, 13: 585
doi: 10.3390/coatings13030585
37 Piscopo G, Atzeni E, Saboori A, et al. An overview of the process mechanisms in the laser powder directed energy deposition[J]. Appl. Sci., 2023, 13: 117
doi: 10.3390/app13010117
38 Ostolaza M, Arrizubieta J I, Lamikiz A, et al. Latest developments to manufacture metal matrix composites and functionally graded materials through AM: A state-of-the-art review[J]. Materials, 2023, 16: 1746
doi: 10.3390/ma16041746
39 Bikas H, Stavropoulos P, Chryssolouris G. Additive manufacturing methods and modelling approaches: A critical review[J]. Int. J. Adv. Manuf. Technol., 2016, 83: 389
doi: 10.1007/s00170-015-7576-2
40 Moges T, Ameta G, Witherell P. A review of model inaccuracy and parameter uncertainty in laser powder bed fusion models and simulations[J]. J. Manuf. Sci. Eng., 2019, 141: 040801
41 Razvi S S, Feng S, Narayanan A, et al. A review of machine learning applications in additive manufacturing[A]. Proceedings of ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 1[C]. Anaheim: ASME, 2019, doi: 10.1115/DETC2019-98145
42 Young Z A, Guo Q L, Parab N D, et al. Types of spatter and their features and formation mechanisms in laser powder bed fusion additive manufacturing process[J]. Addit. Manuf., 2020, 36: 101438
43 Bahrin M A, Othman M F, Azli N H N, et al. Industry 4.0: A review on industrial automation and robotic[J]. J. Teknol., 2016, 78: 137
44 Haddara M, Elragal A. The readiness of ERP systems for the factory of the future[J]. Procedia Comput. Sci., 2015, 64: 721
doi: 10.1016/j.procs.2015.08.598
45 Okano M T. IOT and industry 4.0: the industrial new revolution[A]. International Conference on Management and Information Systems[C]. Bangkok: ICMIS, 2017: 75
46 Park J, Bae H. Big data and AI for process innovation in the Industry 4.0 era[J]. Appl. Sci., 2022, 12: 6346
doi: 10.3390/app12136346
47 Mourtzis D, Angelopoulos J, Panopoulos N. Smart manufacturing and tactile internet based on 5G in Industry 4.0: Challenges, applications and new trends[J]. Electronics, 2021, 10: 3175
doi: 10.3390/electronics10243175
48 Scime L, Beuth J. Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm[J]. Addit. Manuf., 2018, 19: 114
49 Sillani F, MacDonald E, Villela J, et al. In-situ monitoring of powder bed fusion of polymers using laser profilometry[J]. Addit. Manuf., 2022, 59: 103074
50 Bartlett J L, Heim F M, Murty Y V, et al. In situ defect detection in selective laser melting via full-field infrared thermography[J]. Addit. Manuf., 2018, 24: 595
51 Furumoto T, Ueda T, Alkahari M R, et al. Investigation of laser consolidation process for metal powder by two-color pyrometer and high-speed video camera[J]. CIRP Ann., 2013, 62: 223
doi: 10.1016/j.cirp.2013.03.032
52 Craeghs T, Bechmann F, Berumen S, et al. Feedback control of layerwise laser melting using optical sensors[J]. Phys. Procedia, 2010, 5: 505
doi: 10.1016/j.phpro.2010.08.078
53 Ito K, Kusano M, Demura M, et al. Detection and location of microdefects during selective laser melting by wireless acoustic emission measurement[J]. Addit. Manuf., 2021, 40: 101915
54 Ren Z S, Gao L, Clark S J, et al. Machine learning-aided real-time detection of keyhole pore generation in laser powder bed fusion[J]. Science, 2023, 379: 89
doi: 10.1126/science.add4667 pmid: 36603080
55 Song L J, Huang W K, Han X, et al. Real-time composition monitoring using support vector regression of laser-induced plasma for laser additive manufacturing[J]. IEEE Trans. Ind. Electron., 2017, 64: 633
doi: 10.1109/TIE.2016.2608318
56 Farshidianfar M H, Khajepour A, Gerlich A. Real-time control of microstructure in laser additive manufacturing[J]. Int. J. Adv. Manuf. Technol., 2016, 82: 1173
doi: 10.1007/s00170-015-7423-5
57 Huang Y Z, Ansari M, Asgari H, et al. Rapid prediction of real-time thermal characteristics, solidification parameters and microstructure in laser directed energy deposition (powder-fed additive manufacturing)[J]. J. Mater. Process. Technol., 2019, 274: 116286
doi: 10.1016/j.jmatprotec.2019.116286
58 DebRoy T, Mukherjee T, Wei H L, et al. Metallurgy, mechanistic models and machine learning in metal printing[J]. Nat. Rev. Mater., 2021, 6: 48
doi: 10.1038/s41578-020-00236-1
59 Chen H, Zhang Y J, Giam A, et al. Experimental and computational study on thermal and fluid behaviours of powder layer during selective laser melting additive manufacturing[J]. Addit. Manuf., 2022, 52: 102645
60 Mukherjee T, Wei H L, De A, et al. Heat and fluid flow in additive manufacturing—Part I: Modeling of powder bed fusion[J]. Comput. Mater. Sci., 2018, 150: 304
doi: 10.1016/j.commatsci.2018.04.022
61 Mukherjee T, Wei H L, De A, et al. Heat and fluid flow in additive manufacturing—Part II: Powder bed fusion of stainless steel, and titanium, nickel and aluminum base alloys[J]. Comput. Mater. Sci., 2018, 150: 369
doi: 10.1016/j.commatsci.2018.04.027
62 Wei H L, Elmer J W, Debroy T. Three-dimensional modeling of grain structure evolution during welding of an aluminum alloy[J]. Acta Mater., 2017, 126: 413
doi: 10.1016/j.actamat.2016.12.073
63 Zhang Z, Tan Z J, Yao X X, et al. Numerical methods for microstructural evolutions in laser additive manufacturing[J]. Comput. Math. Appl., 2019, 78: 2296
doi: 10.1016/j.camwa.2018.07.011
64 Li X X, Tan W D. Numerical investigation of effects of nucleation mechanisms on grain structure in metal additive manufacturing[J]. Comput. Mater. Sci., 2018, 153: 159
doi: 10.1016/j.commatsci.2018.06.019
65 Mukherjee T, DebRoy T. Printability of 316 stainless steel[J]. Sci. Technol. Weld. Joining, 2019, 24: 412
doi: 10.1080/13621718.2019.1607061
66 Schänzel M, Shakirov D, Ilin A, et al. Coupled thermo-mechanical process simulation method for selective laser melting considering phase transformation steels[J]. Comput. Math. Appl., 2019, 78: 2230
doi: 10.1016/j.camwa.2019.01.019
67 Chen M M, Shi R H, Liu Z Z, et al. Phase-field simulation of lack-of-fusion defect and grain growth during laser powder bed fusion of Inconel 718[J]. Int. J. Miner. Metall. Mater., 2023, 30: 2224
doi: 10.1007/s12613-023-2664-z
68 Yang Y, Knol M F, van Keulen F, et al. A semi-analytical thermal modelling approach for selective laser melting[J]. Addit. Manuf., 2018, 21: 284
69 Yang Y B, Zhou X, Li Q, et al. A computationally efficient thermo-mechanical model for wire arc additive manufacturing[J]. Addit. Manuf., 2021, 46: 102090
70 Yang Y, van Keulen F, Ayas C. A computationally efficient thermal model for selective laser melting[J]. Addit. Manuf., 2020, 31: 100955
71 Kusano M, Miyazaki S, Watanabe M, et al. Tensile properties prediction by multiple linear regression analysis for selective laser melted and post heat-treated Ti-6Al-4V with microstructural quantification[J]. Mater. Sci. Eng., 2020, 787A: 139549
72 Hertlein N, Deshpande S, Venugopal V, et al. Prediction of selective laser melting part quality using hybrid Bayesian network[J]. Addit. Manuf., 2020, 32: 101089
73 Zhang J J, Wang P, Gao R X. Deep learning-based tensile strength prediction in fused deposition modeling[J]. Comput. Ind., 2019, 107: 11
doi: 10.1016/j.compind.2019.01.011
74 Raj A, Owen C, Stegman B, et al. Predicting mechanical properties from co-axial melt pool monitoring signals in laser powder bed fusion[J]. J. Manuf. Processes, 2023, 101: 181
doi: 10.1016/j.jmapro.2023.04.083
75 Estalaki S M, Lough C S, Landers R G, et al. Predicting defects in laser powder bed fusion using in-situ thermal imaging data and machine learning[J]. Addit. Manuf., 2022, 58: 103008
76 Sah A K, Agilan M, Dineshraj S, et al. Machine learning-enabled prediction of density and defects in additively manufactured Inconel 718 alloy[J]. Mater Today Commun, 2022, 30: 103193
77 Smoqi Z, Gaikwad A, Bevans B, et al. Monitoring and prediction of porosity in laser powder bed fusion using physics-informed meltpool signatures and machine learning[J]. J. Mater. Process. Technol., 2022, 304: 117550
doi: 10.1016/j.jmatprotec.2022.117550
78 Mondal B, Mukherjee T, DebRoy T. Crack free metal printing using physics informed machine learning[J]. Acta Mater., 2022, 226: 117612
doi: 10.1016/j.actamat.2021.117612
79 Liu Q, Wu H K, Paul M J, et al. Machine-learning assisted laser powder bed fusion process optimization for AlSi10Mg: New microstructure description indices and fracture mechanisms[J]. Acta Mater., 2020, 201: 316
doi: 10.1016/j.actamat.2020.10.010
80 Dastjerdi A A, Movahhedy M R, Akbari J. Optimization of process parameters for reducing warpage in selected laser sintering of polymer parts[J]. Addit. Manuf., 2017, 18: 285
81 Yu T Y, Mo X D, Chen M J, et al. Machine-learning-assisted microstructure-property linkages of carbon nanotube-reinforced aluminum matrix nanocomposites produced by laser powder bed fusion[J]. Nanotechnol. Rev., 2021, 10: 1410
doi: 10.1515/ntrev-2021-0093
82 Gan Z T, Li H Y, Wolff S J, et al. Data-driven microstructure and microhardness design in additive manufacturing using a self-organizing map[J]. Engineering, 2019, 5: 730
doi: 10.1016/j.eng.2019.03.014
83 Silbernagel C, Aremu A, Ashcroft I. Using machine learning to aid in the parameter optimisation process for metal-based additive manufacturing[J]. Rapid Prototyp. J., 2020, 26: 625
doi: 10.1108/RPJ-08-2019-0213
84 Wang R X, Standfield B, Dou C R, et al. Real-time process monitoring and closed-loop control on laser power via a customized laser powder bed fusion platform[J]. Addit. Manuf., 2023, 66: 103449
85 Tamir T S, Xiong G, Fang Q H, et al. Machine-learning-based monitoring and optimization of processing parameters in 3D printing[J]. Int. J. Comput. Integr. Manuf., 2023, 36: 1362
doi: 10.1080/0951192X.2022.2145019
86 Koren O, Shamalov A, Perel N. Small files problem resolution via hierarchical clustering algorithm[J]. Big Data, 2023, doi: 10.1089/big.2022.0181
87 Kaseb M R, Khafagy M H, Ali I A, et al. An improved technique for increasing availability in big data replication[J]. Future Gener. Comput. Syst., 2019, 91: 493
doi: 10.1016/j.future.2018.08.015
88 Farkas Z, Kacsuk P, Hajnal A. Connecting workflow-oriented science gateways to multi-cloud systems[A]. 7th International Workshop on Science Gateways[C]. Budapest: IEEE, 2015: 40
89 Cheng W H, Chiang C I, Yang C T, et al. The Implementation of supporting uniform data distribution with software-dened storage service on heterogeneous cloud storage[A]. 2016 IEEE 22nd International Conference on Parallel and Distributed Systems[C]. Wuhan: IEEE, 2016: 610
90 Ou Z H, Hwang Z H, Chen F, et al. Is cloud storage ready? A comprehensive study of IP-based storage systems[A]. 2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing[C]. Limassol: IEEE, 2015: 1
[1] LI Kangjie, SUN Zeyu, HE Bei, TIAN Xiangjun. Microstructure and Hardness of Al-Cu-Li Alloy Fabricated by Arc Additive Manufacturing Based on In Situ Metallurgy of Molten Pool[J]. 金属学报, 2024, 60(5): 661-669.
[2] ZENG Li, WANG Guilan, ZHANG Haiou, ZHAI Wenzheng, ZHANG Yong, ZHANG Mingbo. Microstructure and Mechanical Properties of GH4169D Superalloy Fabricated by Hybrid Arc and Micro-Rolling Additive Manufacturing[J]. 金属学报, 2024, 60(5): 681-690.
[3] SUN Laibo, HUANG Lujun, HUANG Ruisheng, XU Kai, WU Pengbo, LONG Weimin, JIANG Fengchun, FANG Naiwen. Progress in the Effect of Ultrasonic Impact Treatment on Microstructure Improvement and Strengthening Mechanism in Additive Manufacturing[J]. 金属学报, 2024, 60(3): 273-286.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[6] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[7] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[8] JI Xiumei, HOU Meiling, WANG Long, LIU Jie, GAO Kewei. Modeling and Application of Deformation Resistance Model for Medium and Heavy Plate Based on Machine Learning[J]. 金属学报, 2023, 59(3): 435-446.
[9] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[10] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[11] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[12] SONG Bo, ZHANG Jinliang, ZHANG Yuanjie, HU Kai, FANG Ruxuan, JIANG Xin, ZHANG Xinru, WU Zusheng, SHI Yusheng. Research Progress of Materials Design for Metal Laser Additive Manufacturing[J]. 金属学报, 2023, 59(1): 1-15.
[13] ZHANG Baicheng, ZHANG Wenlong, QU Xuanhui. Composition Design of Additive Manufacturing Materials Based on High Throughput Preparation[J]. 金属学报, 2023, 59(1): 75-86.
[14] GE Jinguo, LU Zhao, HE Siliang, SUN Yan, YIN Shuo. Anisotropy in Microstructures and Mechanical Properties of 2Cr13 Alloy Produced by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(1): 157-168.
[15] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
No Suggested Reading articles found!