|
|
Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature |
LIU Laidi1,2, DING Biao1,2( ), REN Weili1,2( ), ZHONG Yunbo1,2, WANG Hui3, WANG Qiuliang3 |
1 State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China 2 Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, Shanghai 200444, China 3 Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China |
|
Cite this article:
LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature. Acta Metall Sin, 2023, 59(3): 387-398.
|
Abstract Nickel-based superalloys have been widely used in aero engines and gas turbines because of their excellent high-temperature strength and exceptional oxidation resistance. The oxidation resistance is obtained using the thermal barrier coatings and alloying elements. In the previous investigations, the oxidation time of the nickel-based superalloys has been focused on hundreds of hours. However, in practice, the superalloys last far longer. This study investigated the superalloy DZ445's oxidation behavior at 900oC for 300-2600 h. An oxidation film with a four-layer structure is formed after oxidation at 900oC for 500 h and above. The outermost layer is primarily composed of NiCr2O4, Cr2O3, and TiO2. The subouter layer consists of CrTaO4 and TiO2, and the subinner layer consists of Al2O3, NiCr2O4, and NiO. The innermost layer is primarily Al2O3. The appearances of the subouter layer and subinner layer greatly reduce the oxidation rate of the alloy, which is represented by the dramatic increase in the oxidation kinetics equation exponent and a sharp reduction of the oxidation rate constant. The formation of subouter layer changes the oxidation mechanism from outward diffusion of alloy elements to O-inward diffusion. When the subinner layer is formed, the oxidation behavior is controlled using the outward diffusion of Ni and Cr and the O-inward diffusion. The multilayer structure gave the alloy an excellent oxidation resistance capacity.
|
Received: 12 November 2021
|
|
Fund: National Natural Science Foundation of China(51871142);Independent Research and Development Project of State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University(SKLASS 2020-Z04);Science and Technology Commission of Shanghai Municipality(19DZ2270200) |
About author: DING Biao, Tel: 15026981773, E-mail: dingbiao312@126.com REN Weili, professor, Tel: 15902176956, E-mail: wlren@staff.shu.edu.cn;
|
1 |
Ren S F, Zhang J Y, Zhang X F, et al. Evolution of interfacial microstructure of Ni-Co based superalloy during plastic deformation bonding and its bonding mechanism [J]. Acta Metall. Sin., 2022, 58: 129
|
|
任少飞, 张健杨, 张新房 等. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制 [J]. 金属学报, 2022, 58: 129
doi: 10.11900/0412.1961.2020.00493
|
2 |
Zhu Y P, Sheng N C, Xie J, et al. Precipitation behavior of W-rich phases in a high W-containing Ni-based superalloys K416B [J]. Acta Metall. Sin., 2021, 57: 215
doi: 10.11900/0412.1961.2020.00180
|
|
朱玉平, 盛乃成, 谢 君 等. 高钨镍基高温合金K416B富W相的析出行为 [J]. 金属学报, 2021, 57: 215
doi: 10.11900/0412.1961.2020.00180
|
3 |
Gao B, Wang L, Song X, et al. Effect of pre-oxidation on high temperature oxidation and corrosion behavior of Co-Al-W-based superalloy [J]. Acta Metall. Sin., 2019, 55: 1273
doi: 10.11900/0412.1961.2019.00032
|
|
高 博, 王 磊, 宋 秀 等. 预氧化对Co-Al-W基高温合金高温氧化和热腐蚀行为的影响 [J]. 金属学报, 2019, 55: 1273
|
4 |
Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296: 280
pmid: 11951028
|
5 |
Yang L, Lv H T, Wan C L, et al. Review: Mechanism of reactive element effect-oxide pegging [J]. Acta Metall. Sin., 2021, 57: 182
|
|
杨 亮, 吕皓天, 万春磊 等. 综述: 活性元素作用机理——氧化物“钉扎”模型 [J]. 金属学报, 2021, 57: 182
|
6 |
Zhao M Y, Zhen H J, Dong Z H, et al. Preparation and performance of a novel wear-resistant and high temperature oxidation-resistant NiCrAlSiC composite coating [J]. Acta Metall. Sin., 2019, 55: 902
doi: 10.11900/0412.1961.2019.00034
|
|
赵明雨, 甄会娟, 董志宏 等. 新型耐磨耐高温氧化NiCrAlSiC复合涂层的制备及性能研究 [J]. 金属学报, 2019, 55: 902
doi: 10.11900/0412.1961.2019.00034
|
7 |
Giggins C S, Pettit F S. Oxidation of Ni-Cr-Al alloys between 1000 and 1200℃ [J]. J. Electrochem. Soc., 1971, 118: 1782
doi: 10.1149/1.2407837
|
8 |
Barrett C A, Lowell C E. Resistance of Ni-Cr-Al alloys to cyclic oxidation at 1100 and 1200oC [J]. Oxid. Met., 1977, 11: 199
doi: 10.1007/BF00606544
|
9 |
Chen M, Patu S, Shen J N, et al. Effects of Cr+ ion implantation on the oxidation of Ni3Al [J]. J. Mater. Res., 1993, 8: 734
doi: 10.1557/JMR.1993.0734
|
10 |
Yang S W. Effect of Ti and Ta on the oxidation of a complex superalloy [J]. Oxid. Met., 1981, 15: 375
doi: 10.1007/BF00603531
|
11 |
Kim H S, Park S J, Seo S M, et al. High temperature oxidation resistance of Ni-(5~13)Co-(10~16)Cr-(5~9)W-5Al-(1~1.5)Ti-(3~6)Ta alloys [J]. Met. Mater. Int., 2016, 22: 789
doi: 10.1007/s12540-016-6305-1
|
12 |
Park S J, Lee K H, Seo S M, et al. Statistics of oxidation resistance of Ni-(0-15)Co-(8-15)Cr-(0-5)Mo-(0-10)W-(3-8)Al-(0-5)Ti-(0-10)Ta-0.1C-0.01B superalloys at 1000oC by compositional variations [J]. Rare Met., 2020, 39: 918
doi: 10.1007/s12598-018-1063-5
|
13 |
Han F F, Chang J X, Li H, et al. Influence of Ta content on hot corrosion behaviour of a directionally solidified nickel base superalloy [J]. J. Alloys Compd., 2015, 619: 102
doi: 10.1016/j.jallcom.2014.08.259
|
14 |
Park S J, Seo S M, Yoo Y S, et al. Effects of Al and Ta on the high temperature oxidation of Ni-based superalloys [J]. Corros. Sci., 2015, 90: 305
doi: 10.1016/j.corsci.2014.10.025
|
15 |
Liu C T, Ma J, Sun X F, et al. Mechanism of the oxidation and degradation of the aluminide coating on the nickel-base single-crystal superalloy DD32M [J]. Surf. Coat. Technol., 2010, 204: 3641
doi: 10.1016/j.surfcoat.2010.04.041
|
16 |
Guo H B, Wang D, Peng H, et al. Effect of Sm, Gd, Yb, Sc and Nd as reactive elements on oxidation behaviour of β-NiAl at 1200oC [J]. Corros. Sci., 2014, 78: 369
doi: 10.1016/j.corsci.2013.10.021
|
17 |
Ren W L, Ouyang F F, Ding B, et al. The influence of CrTaO4 layer on the oxidation behavior of a directionally-solidified nickel-based superalloy at 850-900oC [J]. J. Alloys Compd., 2017, 724: 565
doi: 10.1016/j.jallcom.2017.07.066
|
18 |
Xu C Z, Jiang S M, Ma J, et al. High temperature oxidation behaviors of two Ni-Co-Cr-Al-Si-Y coatings deposited by arc ion palting [J]. Acta Metall. Sin., 2009, 45: 964
|
|
徐朝政, 姜肃猛, 马 军 等. 两种电弧离子镀Ni-Co-Cr-Al-Si-Y涂层的高温氧化行为 [J]. 金属学报, 2009, 45: 964
|
19 |
Nychka J A, Clarke D R, Meier G H. Spallation and transient oxide growth on PWA 1484 superalloy [J]. Mater. Sci. Eng., 2008, A490: 359
|
20 |
Pei H Q, Wen Z X, Yue Z F. Long-term oxidation behavior and mechanism of DD6 Ni-based single crystal superalloy at 1050oC and 1100oC in air [J]. J. Alloys Compd., 2017, 704: 218
doi: 10.1016/j.jallcom.2017.02.031
|
21 |
Zheng L, Zhang M C, Dong J X. Oxidation behavior and mechanism of powder metallurgy Rene95 nickel based superalloy between 800 and 1000oC [J]. Appl. Surf. Sci., 2010, 256: 7510
doi: 10.1016/j.apsusc.2010.05.098
|
22 |
Wang C S, Guo L L, Tang L Y, et al. Oxidation behavior of GH984G alloy in steam at 700oC [J]. Acta Metall. Sin., 2019, 55: 893
|
|
王常帅, 郭莉莉, 唐丽英 等. GH984G合金在700℃水蒸气中的氧化行为 [J]. 金属学报, 2019, 55: 893
doi: 10.11900/0412.1961.2018.00440
|
23 |
Liu F J, Zhang M C, Dong J X. High-temperature oxidation of FGH96 P/M superalloy [J]. Acta Metall. Sin. (Engl. Lett.), 2007, 20: 102
doi: 10.1016/S1006-7191(07)60014-3
|
24 |
Li Y Q, Li J L, Qin C, et al. Isothermal oxidation behavior of DZ125 alloy [J]. Spec. Cast. Nonferrous Alloys, 2018, 38: 349
|
|
李涌泉, 李吉林, 秦 春 等. DZ125合金抗高温氧化性能研究 [J]. 特种铸造及有色合金, 2018, 38: 349
|
25 |
Müller F, Gorr B, Christ H J, et al. On the oxidation mechanism of refractory high entropy alloys [J]. Corros. Sci., 2019, 159: 108161
doi: 10.1016/j.corsci.2019.108161
|
26 |
Wu Y, Narita T. The cyclic oxidation behavior of the single crystal TMS-82+ superalloy in humidified air [J]. Mater. Corros., 2009, 60: 781
|
27 |
Gao B, Wang L, Liu Y, et al. High temperature oxidation behaviour of γ'-strengthened Co-based superalloys with different Ni addition [J]. Corros. Sci., 2019, 157: 109
doi: 10.1016/j.corsci.2019.05.036
|
28 |
Godlewski K, Godlewska E. Effect of chromium on the protective properties of aluminide coatings [J]. Oxid. Met., 1986, 26: 125
doi: 10.1007/BF00664277
|
29 |
Qin L, Pei Y L, Li S S, et al. Role of volatilization of molybdenum oxides during the cyclic oxidation of high-Mo containing Ni-based single crystal superalloys [J]. Corros. Sci., 2017, 129: 192
doi: 10.1016/j.corsci.2017.08.025
|
30 |
Park S J, Seo S M, Yoo Y S, et al. Statistical study of the effects of the composition on the oxidation resistance of Ni-Based superalloys [J]. J. Nanomater., 2015, 2015: 929546
|
31 |
Lu X D, Chen T. Isothermal oxidation behaviour of a Ni-base superalloy at 900 and 1000oC [J]. J. Funct. Mater., 2015, 46: 4025
|
|
卢旭东, 陈 涛. 一种镍基合金在900和1000℃的高温氧化行为 [J]. 功能材料, 2015, 46: 4025
|
32 |
Lu X D, Yang J B, Yan M, et al. Isothermal oxidation behavior of Ni-Al-Co-Cr-Mo-Ti alloy at 850oC and 950oC [J]. Procedia Eng., 2012, 27: 932
doi: 10.1016/j.proeng.2011.12.540
|
|
卢旭东, 杨君宝, 阎 明 等. Ni-Al-Co-Cr-Mo-Ti合金在850℃和950℃的氧化行为 [J]. Pcocedia Eng., 2012, 27: 932
|
33 |
Brenneman J, Wei J, Sun Z, et al. Oxidation behavior of GTD111 Ni-based superalloy at 900oC in air [J]. Corros. Sci., 2015, 100: 267
doi: 10.1016/j.corsci.2015.07.031
|
34 |
Semiatin S L, Kramb R C, Turner R E, et al. Analysis of the homogenization of a nickel-base superalloy [J]. Scr. Mater., 2004, 51: 491
doi: 10.1016/j.scriptamat.2004.05.049
|
35 |
Cserháti C, Paul A, Kodentsov A A, et al. Intrinsic diffusion in Ni3Al system [J]. Intermetallics, 2003, 11: 291
doi: 10.1016/S0966-9795(02)00235-2
|
36 |
Jiang J F, Xiao G F, Wang Y, et al. High temperature oxidation behavior of the wrought Ni-based superalloy GH4037 in the solid and semi-solid state [J]. J. Alloys Compd., 2019, 784: 394
doi: 10.1016/j.jallcom.2019.01.093
|
37 |
Yun D W, Seo S M, Jeong H W, et al. The cyclic oxidation behaviour of Ni-based superalloy GTD-111 with sulphur impurities at 1100oC [J]. Corros. Sci., 2015, 90: 392
doi: 10.1016/j.corsci.2014.10.030
|
38 |
Parimin N, Hamzah E. High temperature cyclic oxidation of Ni-based 800H superalloy at 700oC in air [A]. IOP Conference Series: Materials Science and Engineering [C]. Pahang: International Conference on Sustainable Materials, 2020, 957: 012013
|
39 |
Sato A, Chiu Y L, Reed R C. Oxidation of nickel-based single-crystal superalloys for industrial gas turbine applications [J]. Acta Mater., 2011, 59: 225
doi: 10.1016/j.actamat.2010.09.027
|
40 |
Karunaratne M S A, Carter P, Reed R C. Interdiffusion in the face-centred cubic phase of the Ni-Re, Ni-Ta and Ni-W systems between 900 and 1300oC [J]. Mater. Sci. Eng., 2000, A281: 229
|
41 |
Hu Y B, Cao T S, Cheng C Q, et al. Oxidation behavior of a single-crystal Ni-based superalloy over the temperature range of 850oC-900oC in air [J]. Appl. Surf. Sci., 2019, 484: 209
doi: 10.1016/j.apsusc.2019.04.089
|
42 |
Zhao Z. Isothermal oxidation behavior of DZ792 superalloy [D]. Shenyang: Northeastern University, 2009
|
|
赵 卓. DZ792合金的恒温氧化行为研究 [D]. 沈阳: 东北大学, 2009
|
43 |
Venkatu D A, Poteat L E. Diffusion of titanium of single crystal rutile [J]. Mater. Sci. Eng., 1970, 5: 258
doi: 10.1016/0025-5416(70)90014-5
|
44 |
Gorr B, Müller F, Schellert S, et al. A new strategy to intrinsically protect refractory metal based alloys at ultra high temperatures [J]. Corros. Sci., 2020, 166: 108475
doi: 10.1016/j.corsci.2020.108475
|
45 |
Lo K C, Chang Y J, Murakami H, et al. An oxidation resistant refractory high entropy alloy protected by CrTaO4-based oxide [J]. Sci. Rep., 2019, 9: 7266
doi: 10.1038/s41598-019-43819-x
|
46 |
Lv M L, Ni S, Wang Z, et al. Cation ordering/disordering effects upon photocatalytic activity of CrNbO4, CrTaO4, Sr2CrNbO6 and Sr2CrTaO6 [J]. Int. J. Hydrogen Energy, 2016, 41: 1550
doi: 10.1016/j.ijhydene.2015.11.057
|
47 |
Tan X Y, Wang X, Yin Y S, et al. Crystal structure and valence electron structure of α-Al2O3 [J]. Chin. J. Nonferrous Met., 2002, 12(suppl.): 18
|
|
谭训彦, 王 昕, 尹衍升 等. α-Al2O3的晶体结构与价电子结构 [J]. 中国有色金属学报, 2002, 12(): 18
|
48 |
Pieraggi B, Dabosi F. High-temperature oxidation of a single crystal Ni-base superalloy [J]. Werkst. Korros., 1987, 38: 584
doi: 10.1002/maco.19870381006
|
49 |
Li T F. High Temperature Oxidation and Hot Corrosion of Metals [M]. Beijing: Chemical Industry Press, 2003: 194
|
|
李铁藩. 金属高温氧化和热腐蚀 [M]. 北京: 化学工业出版社, 2003: 194
|
50 |
Zhang J S. High Temperature Deformation and Fracture of Materials [M]. Beijing: Science Press, 2007: 470
|
|
张俊善. 材料的高温变形与断裂 [M]. 北京: 科学出版社, 2007: 470
|
51 |
Brandes E A, Brook G B. Smithells Metals Reference Book [M]. 7th Ed., Oxford: Butterworth-Heinemann, 1992: 13
|
52 |
Atkinson A, Taylor R I. The self-diffusion of Ni in NiO and its relevance to the oxidation of Ni [J]. J. Mater. Sci., 1978, 13: 427
doi: 10.1007/BF00647789
|
53 |
Karunaratne M S A, Reed R C. Interdiffusion of the platinum-group metals in nickel at elevated temperatures [J]. Acta Mater., 2003, 51: 2905
doi: 10.1016/S1359-6454(03)00105-8
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|