|
|
Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes |
ZHANG Kaiyuan1,2, DONG Wenchao1( ), ZHAO Dong3, LI Shijian3, LU Shanping1( ) |
1Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3Shenyang Aircraft Corporation, Shenyang 110034, China |
|
Cite this article:
ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes. Acta Metall Sin, 2023, 59(12): 1633-1643.
|
Abstract Due to its outstanding all-around performance, Fe-Co-Ni ultra-high strength steel (UHSS) is frequently used in crucial load-bearing components. The UHSS components will be significantly deformed during the welding and post-welding heat treatment operations, which makes the subsequent assembly to satisfy usage requirements a challenge. As a result, it is crucial to simulate the entire manufacturing process of UHSS components to investigate and comprehend the laws of stress and distortion in UHSS component weld joints throughout the manufacturing process. In this study, the “thermo-metallurgical-mechanical” coupled finite element model's accuracy is first verified, followed by the development of a heat source model for electron beam welding. The evolution of the microstructure of the weld joint, stress, and distortion in the weld joint of complex components are thus precisely predicted using the linked model throughout the production process of “electron beam welding-vacuum gas quenching”. The primary cause of the severe deformation of complex components is vacuum gas quenching. The solid-state phase transformation cannot be ignored in the simulation process of “electron beam welding-vacuum gas quenching” of the complicated components.
|
Received: 17 April 2022
|
|
Fund: Natural Science Foundation of Heilongjiang Province(TD2021E006);Major Research and Development Project of Liaoning Province(2020JH1/10100001) |
1 |
Gao Y H, Liu S Z, Hu X B, et al. A novel low cost 2000 MPa grade ultra-high strength steel with balanced strength and toughness[J]. Mater. Sci. Eng., 2019, A759: 298
|
2 |
Kim Y K, Kim K S, Song Y B, et al. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness[J]. J. Mater. Sci. Technol., 2021, 66: 36
doi: 10.1016/j.jmst.2020.06.014
|
3 |
Wang C C, Zhang C, Yang Z G, et al. Design standard and analysis of ageing process in high Co-Ni secondary hardening steel[J]. Acta Metall. Sin., 2017, 53: 175
|
|
王晨充, 张 弛, 杨志刚 等. 高Co-Ni二次硬化钢的设计准则与时效工艺分析[J]. 金属学报, 2017, 53: 175
|
4 |
Mondiere A, Déneux V, Binot N, et al. Controlling the MC and M2C carbide precipitation in Ferrium® M54® steel to achieve optimum ultimate tensile strength/fracture toughness balance[J]. Mater. Charact., 2018, 140: 103
doi: 10.1016/j.matchar.2018.03.041
|
5 |
Zhang Y P, Zhan D P, Qi X W, et al. Effect of solid-solution temperature on the microstructure and properties of ultra-high-strength ferrium S53® steel[J]. Mater. Sci. Eng., 2018, A730: 41
|
6 |
Zhang Y P, Zhan D P, Qi X W, et al. Austenite and precipitation in secondary-hardening ultra-high-strength stainless steel[J]. Mater. Charact., 2018, 144: 393
doi: 10.1016/j.matchar.2018.07.038
|
7 |
Liu Y, Qin S W, Zhang J Z, et al. Influence of transformation plasticity on the distribution of internal stress in three water-quenched cylinders[J]. Metall. Mater. Trans., 2017, 48A: 4943
|
8 |
Ahn J, He E, Chen L, et al. Determination of residual stresses in fibre laser welded AA2024-T3 T-joints by numerical simulation and neutron diffraction[J]. Mater. Sci. Eng., 2018, A712: 685
|
9 |
Lin J, Ma N S, Liu X, et al. Modification of residual stress distribution in welded joint of titanium alloy with multi electron beam heating[J]. J. Mater. Process. Technol., 2020, 278: 116504
doi: 10.1016/j.jmatprotec.2019.116504
|
10 |
Zhang C H, Li S, Sun J M, et al. Controlling angular distortion in high strength low alloy steel thick-plate T-joints[J]. J. Mater. Process. Technol., 2019, 267: 257
doi: 10.1016/j.jmatprotec.2018.12.023
|
11 |
Hamelin C J, Muránsky O, Smith M C, et al. Validation of a numerical model used to predict phase distribution and residual stress in ferritic steel weldments[J]. Acta Mater., 2014, 75: 1
doi: 10.1016/j.actamat.2014.04.045
|
12 |
Tan P F, Shen F, Li B, et al. A thermo-metallurgical-mechanical model for selective laser melting of Ti6Al4V[J]. Mater. Des., 2019, 168: 107642
doi: 10.1016/j.matdes.2019.107642
|
13 |
Lee S J, Lee Y K. Finite element simulation of quench distortion in a low-alloy steel incorporating transformation kinetics[J]. Acta Mater., 2008, 56: 1482
doi: 10.1016/j.actamat.2007.11.039
|
14 |
Tian Y, Tan Z L, Li H J, et al. A new finite element model for Mn-Si-Cr bainitic/martensitic product quenching process: Simulation and experimental validation[J]. J. Mater. Process. Technol., 2021, 294: 117137
doi: 10.1016/j.jmatprotec.2021.117137
|
15 |
Jung M, Kang M, Lee Y K. Finite-element simulation of quenching incorporating improved transformation kinetics in a plain medium-carbon steel[J]. Acta Mater., 2012, 60: 525
doi: 10.1016/j.actamat.2011.10.007
|
16 |
Ning J, Zhang L J, Yang J N, et al. Characteristics of multi-pass narrow-gap laser welding of D406A ultra-high strength steel[J]. J. Mater. Process. Technol., 2019, 270: 168
doi: 10.1016/j.jmatprotec.2019.02.026
|
17 |
Yaghi A H, Hyde T H, Becker A A, et al. Comparison of measured and modelled residual stresses in a welded P91 steel pipe undergoing post weld heat treatment[J]. Int. J. Press. Vessels Pip., 2020, 181: 104076
doi: 10.1016/j.ijpvp.2020.104076
|
18 |
Uzun F, Korsunsky A M. On the analysis of post weld heat treatment residual stress relaxation in Inconel alloy 740H by combining the principles of artificial intelligence with the eigenstrain theory[J]. Mater. Sci. Eng., 2019, A752: 180
|
19 |
Zhang H, Men Z X, Li J K, et al. Numerical simulation of the electron beam welding and post welding heat treatment coupling process[J]. High Temp. Mater. Process., 2018, 37: 793
doi: 10.1515/htmp-2017-0053
|
20 |
Alberg H, Berglund D. Comparison of plastic, viscoplastic, and creep models when modelling welding and stress relief heat treatment[J]. Comput. Methods Appl. Mech. Eng., 2003, 192: 5189
doi: 10.1016/j.cma.2003.07.010
|
21 |
Berglund D, Alberg H, Runnemalm H. Simulation of welding and stress relief heat treatment of an aero engine component[J]. Finite Elem. Anal. Des., 2003, 39: 865
doi: 10.1016/S0168-874X(02)00136-1
|
22 |
Leblond J B, Devaux J. A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size[J]. Acta Metall., 1984, 32: 137
doi: 10.1016/0001-6160(84)90211-6
|
23 |
Koistinen D P, Marburger R E. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J]. Acta Metall., 1959, 7: 59
doi: 10.1016/0001-6160(59)90170-1
|
24 |
Zhang K Y, Dong W C, Lu S P. Transformation plasticity of AF1410 steel and its influences on the welding residual stress and distortion: Experimental and numerical study[J]. Mater. Sci. Eng., 2021, A821: 141628
|
25 |
Zhang K Y, Dong W C, Lu S P. Experimental and numerical investigation of stress and distortion in AF1410 steel under varying quenching conditions[J]. J. Mater. Eng. Perform., 2022, 31: 6858
doi: 10.1007/s11665-022-06688-6
|
26 |
Bardel D, Nelias D, Robin V, et al. Residual stresses induced by electron beam welding in a 6061 aluminium alloy[J]. J. Mater. Process. Technol., 2016, 235: 1
doi: 10.1016/j.jmatprotec.2016.04.013
|
27 |
Liu Y, Qin S W, Hao Q G, et al. Finite element simulation and experimental verification of internal stress of quenched AISI 4140 cylinders[J]. Metall. Mater. Trans., 2017, 48A: 1402
|
28 |
da Silva A D, Pedrosa T A, Gonzalez-Mendez J L, et al. Distortion in quenching an AISI 4140 C-ring—Predictions and experiments[J]. Mater. Des., 2012, 42: 55
doi: 10.1016/j.matdes.2012.05.031
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|