|
|
Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals |
LU Lei( ), ZHAO Huaizhi |
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
LU Lei, ZHAO Huaizhi. Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals. Acta Metall Sin, 2022, 58(11): 1360-1370.
|
Abstract Heterostructured metals typically exhibit excellent mechanical properties, such as high strength, plasticity, and fracture toughness, which are not present in conventional homogeneous materials. This is primarily due to the synergistic effects arising from the interactions between the internal components including the stress/strain gradients, geometrically necessary dislocations, and unique interfacial behavior. This study focuses on two typical heterogeneous nanostructures (laminated and nanotwinned) by reviewing the recent progress in their strengthening and toughening mechanisms. The analysis highlights the effects of the properties and sizes of the individual components, interfaces, and loading directions on the macroscopic strengthening and toughening behavior.
|
Received: 20 June 2022
|
|
Fund: National Natural Science Foundation of China(51931010);National Natural Science Foundation of China(92163202);Key Research Program of Frontier Science and International Partnership Program, Chinese Academy of Sciences(GJ-HZ2029);Liaoning Revitalization Talents Program(XLYC1802026) |
About author: LU Lei, professor, Tel: (024)23971939, E-mail: llu@imr.ac.cn
|
1 |
Lu K. The future of metals [J]. Science, 2010, 328: 319
doi: 10.1126/science.1185866
pmid: 20395503
|
2 |
Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystalline materials [J]. Prog. Mater. Sci., 2006, 51: 427
doi: 10.1016/j.pmatsci.2005.08.003
|
3 |
Xie J J, Wu X L, Hong Y S. Shear bands at the fatigue crack tip of nanocrystalline nickel [J]. Scr. Mater., 2007, 57: 5
doi: 10.1016/j.scriptamat.2007.03.027
|
4 |
Kumar K S, Suresh S, Chisholm M F, et al. Deformation of electrodeposited nanocrystalline nickel [J]. Acta Mater., 2003, 51: 387
doi: 10.1016/S1359-6454(02)00421-4
|
5 |
Farkas D, Van Petegem S, Derlet P M, et al. Dislocation activity and nano-void formation near crack tips in nanocrystalline Ni [J]. Acta Mater., 2005, 53: 3115
doi: 10.1016/j.actamat.2005.02.012
|
6 |
Pippan R, Hohenwarter A. The importance of fracture toughness in ultrafine and nanocrystalline bulk materials [J]. Mater. Res. Lett., 2016, 4: 127
pmid: 27570712
|
7 |
Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
|
8 |
Lu K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345: 1455
doi: 10.1126/science.1255940
pmid: 25237091
|
9 |
Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: eaau1925
doi: 10.1126/science.aau1925
|
10 |
Calcagnotto M, Adachi Y, Ponge D, et al. Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging [J]. Acta Mater., 2011, 59: 658
doi: 10.1016/j.actamat.2010.10.002
|
11 |
Park K, Nishiyama M, Nakada N, et al. Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel [J]. Mater. Sci. Eng., 2014, A604: 135
|
12 |
Ma X L, Huang C X, Moering J, et al. Mechanical properties of copper/bronze laminates: Role of interfaces [J]. Acta Mater., 2016, 116: 43
doi: 10.1016/j.actamat.2016.06.023
|
13 |
Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
doi: 10.1038/nature01133
|
14 |
Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
doi: 10.1080/21663831.2019.1616331
|
15 |
Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112
|
16 |
Zhao H Z, You Z S, Tao N R, et al. Anisotropic toughening of nanotwin bundles in the heterogeneous nanostructured Cu [J]. Acta Mater., 2022, 228: 117748
doi: 10.1016/j.actamat.2022.117748
|
17 |
ASTM. Standard test method for measurement of fracture toughness [S]. West Conshchocken: American Society of Testing and Materials, 2015
|
18 |
Smith D L, Hoffman D W. Thin-film deposition: Principles and practice [J]. Phys. Today, 1996, 49: 60
|
19 |
Ross C A. Electrodeposited multilayer thin films [J]. Annu. Rev. Mater. Sci., 1994, 24: 159
doi: 10.1146/annurev.ms.24.080194.001111
|
20 |
Bakonyi I, Péter L. Electrodeposited multilayer films with giant magnetoresistance (GMR): Progress and problems [J]. Prog. Mater. Sci., 2010, 55: 107
doi: 10.1016/j.pmatsci.2009.07.001
|
21 |
Fang T H, Li W L, Tao N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper [J]. Science, 2011, 331: 1587
doi: 10.1126/science.1200177
pmid: 21330487
|
22 |
Wu X L, Yang M X, Yuan F P, et al. Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility [J]. Acta Mater., 2016, 112: 337
doi: 10.1016/j.actamat.2016.04.045
|
23 |
You Z S, Qu S D, Luo S S, et al. Fracture toughness evaluation of nanostructured metals via a contactless crack opening displacement gauge [J]. Materialia, 2019, 7: 100430
doi: 10.1016/j.mtla.2019.100430
|
24 |
Luo S S, You Z S, Lu L. Intrinsic fracture toughness of bulk nanostructured Cu with nanoscale deformation twins [J]. Scr. Mater., 2017, 133: 1
doi: 10.1016/j.scriptamat.2017.01.032
|
25 |
Ashby M F. The deformation of plastically non-homogeneous materials [J]. Philos. Mag., 1970, 21: 399
|
26 |
Fleck N A, Muller G M, Ashby M F, et al. Strain gradient plasticity: theory and experiment [J]. Acta Metall. Mater., 1994, 42: 475
doi: 10.1016/0956-7151(94)90502-9
|
27 |
Gao H J, Huang Y G. Geometrically necessary dislocation and size-dependent plasticity [J]. Scr. Mater., 2003, 48: 113
doi: 10.1016/S1359-6462(02)00329-9
|
28 |
Mughrabi H. On the role of strain gradients and long-range internal stresses in the composite model of crystal plasticity [J]. Mater. Sci. Eng., 2001, A317: 171
|
29 |
Mughrabi H. The effect of geometrically necessary dislocations on the flow stress of deformed crystals containing a heterogeneous dislocation distribution [J]. Mater. Sci. Eng., 2001, A319-321: 139
|
30 |
Wu H, Fan G H. An overview of tailoring strain delocalization for strength-ductility synergy [J]. Prog. Mater. Sci., 2020, 113: 100675
doi: 10.1016/j.pmatsci.2020.100675
|
31 |
Yang M X, Pan Y, Yuan F P, et al. Back stress strengthening and strain hardening in gradient structure [J]. Mater. Res. Lett., 2016, 4: 145
doi: 10.1080/21663831.2016.1153004
|
32 |
Wang Y F, Yang M X, Ma X L, et al. Improved back stress and synergetic strain hardening in coarse-grain/nanostructure laminates [J]. Mater. Sci. Eng., 2018, A727: 113
|
33 |
Cao Z, Cheng Z, Xu W, et al. Effect of work hardening discrepancy on strengthening of laminated Cu/CuZn alloys [J]. J. Mater. Sci. Technol., 2022, 103: 67
doi: 10.1016/j.jmst.2021.06.043
|
34 |
Wan T, Cheng Z, Bu L F, et al. Work hardening discrepancy designing to strengthening gradient nanotwinned Cu [J]. Scr. Mater., 2021, 201: 113975
doi: 10.1016/j.scriptamat.2021.113975
|
35 |
Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324: 349
doi: 10.1126/science.1159610
pmid: 19372422
|
36 |
Lu K, Yan F K, Wang H T, et al. Strengthening austenitic steels by using nanotwinned austenitic grains [J]. Scr. Mater., 2012, 66: 878
doi: 10.1016/j.scriptamat.2011.12.044
|
37 |
Xiong L, You Z S, Qu S D, et al. Fracture behavior of heterogeneous nanostructured 316L austenitic stainless steel with nanotwin bundles [J]. Acta Mater., 2018, 150: 130
doi: 10.1016/j.actamat.2018.02.065
|
38 |
You Z S, Luo S S, Lu L. Size effect of deformation nanotwin bundles on their strengthening and toughening in heterogeneous nanostructured Cu [J]. Sci. China Technol. Sci., 2021, 64: 23
doi: 10.1007/s11431-020-1584-6
|
39 |
Yan F K, Liu G Z, Tao N R, et al. Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles [J]. Acta Mater., 2012, 60: 1059
doi: 10.1016/j.actamat.2011.11.009
|
40 |
Zhang Y, Tao N R, Lu K. Mechanical properties and rolling behaviors of Nano-grained copper with embedded nano-twin bundles [J]. Acta Mater., 2008, 56: 2429
doi: 10.1016/j.actamat.2008.01.030
|
41 |
Yan F, Zhang H W, Tao N R, et al. Quantifying the microstructures of pure cu subjected to dynamic plastic deformation at cryogenic temperature [J]. J. Mater. Sci. Technol., 2011, 27: 673
doi: 10.1016/S1005-0302(11)60124-2
|
42 |
Yan F K, Tao N R, Archie F, et al. Deformation mechanisms in an austenitic single-phase duplex microstructured steel with nanotwinned grains [J]. Acta Mater., 2014, 81: 487
doi: 10.1016/j.actamat.2014.08.054
|
43 |
Li Q, Yan F K, Tao N R, et al. Deformation compatibility between nanotwinned and recrystallized grains enhances resistance to interface cracking in cyclic loaded stainless steel [J]. Acta Mater., 2019, 165: 87
doi: 10.1016/j.actamat.2018.11.033
|
44 |
You Z S, Li X Y, Gui L J, et al. Plastic anisotropy and associated deformation mechanisms in nanotwinned metals [J]. Acta Mater., 2013, 61: 217
doi: 10.1016/j.actamat.2012.09.052
|
45 |
Zhao H Z, You Z S, Tao N R, et al. Anisotropic strengthening of nanotwin bundles in heterogeneous nanostructured Cu: Effect of deformation compatibility [J]. Acta Mater., 2021, 210: 116830
doi: 10.1016/j.actamat.2021.116830
|
46 |
Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10: 817
doi: 10.1038/nmat3115
pmid: 22020005
|
47 |
Lesuer D R, Syn C K, Sherby O D, et al. Mechanical behaviour of laminated metal composites [J]. Int. Mater. Rev., 1996, 41: 169
doi: 10.1179/imr.1996.41.5.169
|
48 |
Hunt W H, Osman T M, Lewandowski J J. Micro- and macrostructural factors in DRA fracture resistance [J]. JOM, 1993, 45(1): 30
|
49 |
Dehm G, Jaya B N, Raghavan R, et al. Overview on micro- and nanomechanical testing: New insights in interface plasticity and fracture at small length scales [J]. Acta Mater., 2018, 142: 248
doi: 10.1016/j.actamat.2017.06.019
|
50 |
Liu B X, Huang L J, Rong X D, et al. Bending behaviors and fracture characteristics of laminatedductile-tough composites under different modes [J]. Compos. Sci. Technol., 2016, 126: 94
doi: 10.1016/j.compscitech.2016.02.011
|
51 |
Pippan R. The crack driving force for fatigue crack propagation [J]. Eng. Fract. Mech., 1993, 44: 821
doi: 10.1016/0013-7944(93)90208-A
|
52 |
Wang Y Q, Fritz R, Kiener D, et al. Fracture behavior and deformation mechanisms in nanolaminated crystalline/amorphous micro-cantilevers [J]. Acta Mater., 2019, 180: 73
doi: 10.1016/j.actamat.2019.09.002
|
53 |
Ohashi Y, Wolfenstine J, Koch R, et al. Fracture behavior of a laminated steel-brass composite in bend tests [J]. Mater. Sci. Eng., 1992, A151: 37
|
54 |
Cepeda-Jiménez C M, García-Infanta J M, Pozuelo M, et al. Impact toughness improvement of high-strength aluminium alloy by intrinsic and extrinsic fracture mechanisms via hot roll bonding [J]. Scr. Mater., 2009, 61: 407
doi: 10.1016/j.scriptamat.2009.04.030
|
55 |
Venkateswara Rao K T, Yu W K, Ritchie R O. Cryogenic toughness of commercial aluminum-lithium alloys: Role of delamination toughening [J]. Metall. Trans., 1989, 20A: 485
|
56 |
Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination [J]. Science, 2020, 368: 1347
doi: 10.1126/science.aba9413
pmid: 32381592
|
57 |
Cepeda-Jiménez C M, Pozuelo M, García-Infanta J M, et al. Influence of the alumina thickness at the interfaces on the fracture mechanisms of aluminium multilayer composites [J]. Mater. Sci. Eng., 2008, A496: 133
|
58 |
Kum D W, Oyama T, Wadsworth J, et al. The impact properties of laminated composites containing ultrahigh carbon (UHC) steels [J]. J. Mech. Phys. Solids, 1983, 31: 173
doi: 10.1016/0022-5096(83)90049-2
|
59 |
Lee S, Oyama T, Wadsworth J, et al. Impact properties of a laminated composite based on ultrahigh carbon steel and brass [J]. Mater. Sci. Eng., 1992, A154: 133
|
60 |
Zhang J Y, Zhang X, Wang R H, et al. Length-scale-dependent deformation and fracture behavior of Cu/X (X = Nb, Zr) multilayers: The constraining effects of the ductile phase on the brittle phase [J]. Acta Mater., 2011, 59: 7368
doi: 10.1016/j.actamat.2011.08.016
|
61 |
Nasim M, Li Y C, Wen M, et al. A review of high-strength nanolaminates and evaluation of their properties [J]. J. Mater. Sci. Technol., 2020, 50: 215
doi: 10.1016/j.jmst.2020.03.011
|
62 |
Misra A, Krug H. Deformation behavior of nanostructured metallic multilayers [J]. Adv. Eng. Mater., 2001, 3: 217
doi: 10.1002/1527-2648(200104)3:4<217::AID-ADEM217>3.0.CO;2-5
|
63 |
Zhang J Y, Liu G, Zhang X, et al. A maximum in ductility and fracture toughness in nanostructured Cu/Cr multilayer films [J]. Scr. Mater., 2010, 62: 333
doi: 10.1016/j.scriptamat.2009.10.030
|
64 |
Qin E W, Lu L, Tao N R, et al. Enhanced fracture toughness and strength in bulk nanocrystalline Cu with nanoscale twin bundles [J]. Acta Mater., 2009, 57: 6215
doi: 10.1016/j.actamat.2009.08.048
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|