|
|
ZrO2 Solid Electrolyte Aided Investigation on Electrodeposition in Na3AlF6-SiO2 Melt |
GAO Yunming1,2( ), HE Lin1,2, QIN Qingwei1,2, LI Guangqiang1,2 |
1.The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China 2.Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China |
|
Cite this article:
GAO Yunming, HE Lin, QIN Qingwei, LI Guangqiang. ZrO2 Solid Electrolyte Aided Investigation on Electrodeposition in Na3AlF6-SiO2 Melt. Acta Metall Sin, 2022, 58(10): 1292-1304.
|
Abstract Electrodeposition of silicon from a cryolite-based melt is a possible solution for the mass production of silicon with high purity. Currently, deposition of Si from dissolved SiO2 in cryolite-based melts occurs primarily in a graphite crucible using graphite and quasi-reference electrodes, resulting in series of problems, such as CO x emissions due to carbon participation, non-significant peak positions on cyclic voltammetry (CV) curves due to melt electronic conduction, various reference standards of metal deposition potential, and insufficient investigations on electrode reaction mechanism due to melt composition complexity. In this work, a novel three-electrode electrochemical cell with Pt, O2(air)|YSZ reference (RE), and counter electrodes (CE) was constructed using a Y2O3 stabilized ZrO2 solid electrolyte (YSZ) tube, CV and potentiostat electrolysis tests were performed on Ir wire working electrode in Na3AlF6-5%SiO2 (mass fraction) melt under the conditions of a complete carbon-free and 1323 K. The precipitation potentials of related metals on the cathode in the melt were investigated, and the electrodeposition law in the melt at different potentials was analyzed, using a combination of thermodynamic theoretical calculations, SEM observation, and EDS analysis. The results show that Si can be deposited on the Ir wire in a single step, and its peak potential is about -1.65 V on the CV curve, while the deposition potentials of Al, Na (Zr) are all negative than -1.8 V and increase negatively in turn. During potentiostatic electrolysis, intermetallic compound particles of Zr5Si4 are observed to generate at -1.8 V or -2.0 V, with a generation potential of -1.7 V to -1.8 V. The deposited Si, Al, and Na metals are mainly derived from oxygen-containing compounds produced by the Na3AlF6-SiO2 melt itself but Zr metal from the ZrO2 of the corrosion of YSZ tubes by the melt. The precipitation potentials of related metals (or intermetallic compounds) relative to Pt, O2(air)∣YSZ RE agree well with thermodynamic calculations.
|
Received: 21 March 2021
|
|
Fund: National Natural Science Foundation of China(51174148) |
About author: GAO Yunming, professor, Tel: (027)68862529, E-mail: gaoyunming@wust.edu.cn
|
1 |
Xu J L, Haarberg G M. Electrodeposition of solar cell grade silicon in high temperature molten salts [J]. High Temp. Mater. Proc., 2013, 32: 97
doi: 10.1515/htmp-2012-0045
|
2 |
Elwell D, Feigelson R S. Electrodeposition of solar silicon [J]. Sol. Energy Mater., 1982, 6: 123
doi: 10.1016/0165-1633(82)90014-4
|
3 |
Elwell D, Rao G M. Electrolytic production of silicon [J]. J. Appl. Electrochem., 1988, 18: 15
doi: 10.1007/BF01016199
|
4 |
Sokhanvaran S, Barati M. Electrochemical behavior of silicon species in cryolite melt [J]. J. Electrochem. Soc., 2014, 161: E6
doi: 10.1149/2.042401jes
|
5 |
Sokhanvaran S, Danaei A, Barati M. Determination of cell potential for silicon electrodeposition [J]. Metall. Mater. Trans., 2014, 1E: 187
|
6 |
Sokhanvaran S, Thomas S, Barati M. Charge transport properties of cryolite-silica melts [J]. Electrochim. Acta, 2012, 66: 239
doi: 10.1016/j.electacta.2012.01.077
|
7 |
Jia M, Lai Y Q, Tian Z L, et al. Electrodeposition behavior of silicon from Na3AlF6-LiF melts [J]. Acta Phys.-Chim. Sin., 2011, 27: 1108
doi: 10.3866/PKU.WHXB20110504
|
|
贾 明, 赖延清, 田忠良 等. Na3AlF6-LiF熔盐体系中硅的电沉积行为 [J]. 物理化学学报, 2011, 27: 1108
|
8 |
Korenko M, Vasková Z, Šimko F, et al. Electrical conductivity and viscosity of cryolite electrolytes for solar grade silicon (Si-SoG) electrowinning [J]. Trans. Nonferr. Met. Soc., 2014, 24: 3944
doi: 10.1016/S1003-6326(14)63554-8
|
9 |
Suzuki Y, Inoue Y, Yokota M, et al. Effects of oxide ions on the electrodeposition process of silicon in molten fluorides [J]. J. Electrochem. Soc., 2019, 166: D564
doi: 10.1149/2.0441913jes
|
10 |
Hu Y J, Wang X, Xiao J S, et al. Electrochemical behavior of silicon (IV) ion in BaF2-CaF2-SiO2 melts at 1573K [J]. J. Electrochem. Soc., 2013, 160: D81
doi: 10.1149/2.038303jes
|
11 |
Sakanaka Y, Goto T. Electrodeposition of Si film on Ag substrate in molten LiF-NaF-KF directly dissolving SiO2 [J]. Electrochim. Acta, 2015, 164: 139
doi: 10.1016/j.electacta.2014.12.159
|
12 |
De Mattei R C, Elwell D, Feigelson R S. Electrodeposition of silicon at temperatures above its melting point [J]. J. Electrochem. Soc., 1981, 128: 1712
doi: 10.1149/1.2127716
|
13 |
Haarberg G M, Famiyeh L, Martinez A M, et al. Electrodeposition of silicon from fluoride melts [J]. Electrochim. Acta, 2013, 100: 226
doi: 10.1016/j.electacta.2012.11.052
|
14 |
Monnier R, Giacometti J C. Recherches sur le raffinage électrolytique du silicium [J]. Helv. Chim. Acta, 1964, 47: 345
doi: 10.1002/hlca.19640470202
|
15 |
Suzdaltsev A V, Pershin P S, Filatov A A, et al. Review—Synthesis of aluminum master alloys in oxide-fluoride melts: A review [J]. J. Electrochem. Soc., 2020, 167: 102503
doi: 10.1149/1945-7111/ab9879
|
16 |
Liu A M, Shi Z N, Xu J L, et al. Preparation of Al-Si master alloy by electrochemical reduction of volcanic rock in cryolite molten salt [J]. JOM, 2016, 68: 1518
doi: 10.1007/s11837-016-1898-x
|
17 |
Oishi T, Watanabe M, Koyama K, et al. Process for solar grade silicon production by molten salt electrolysis using aluminum-silicon liquid alloy [J]. J. Electrochem. Soc., 2011, 158: E93
doi: 10.1149/1.3605720
|
18 |
Yu X G, Qiu Z X. Preparation of Al-Si alloy by molten salt electrolysis [J]. J. Northeast. Univ. (Nat. Sci.), 2004, 25: 442
|
|
于旭光, 邱竹贤. 熔盐电解法制取Al-Si合金 [J]. 东北大学学报(自然科学版), 2004, 25: 442
|
19 |
Li M, Li Y, Wang Z W. Electrochemical reduction of zirconium oxide and Co-deposition of Al-Zr alloy from cryolite molten salt [J]. J. Electrochem. Soc., 2019, 166: D65
doi: 10.1149/2.1291902jes
|
20 |
Bao Morigengaowa. Preparation of Al-Zr alloys by molten salt electrolysis [D]. Shenyang: Northeastern University, 2015
|
|
包莫日根高娃. 熔盐电解法制备铝锆合金的研究 [D]. 沈阳: 东北大学, 2015
|
21 |
Wang C Z. Solid Electrolyte and Chemical Sensors [M]. Beijing: Metallurgical Industry Press, 2000: 259
|
|
王常珍. 固体电解质和化学传感器 [M]. 北京: 冶金工业出版社, 2000: 259
|
22 |
Gao Y M, Song J X, Zhang Y Q, et al. Measurement of the diffusivity of oxygen in high-temperature liquid silver by electrochemical method [J]. Acta Metall. Sin., 2010, 46: 277
doi: 10.3724/SP.J.1037.2010.00277
|
|
高运明, 宋建新, 张业勤 等. 利用电化学方法测定高温银液中氧的扩散系数 [J]. 金属学报, 2010, 46: 277
doi: 10.3724/SP.J.1037.2009.00579
|
23 |
Hong C, Gao Y M, Yang C H, et al. Electrochemical behavior of Ni2+ in SiO2-CaO-MgO-Al2O3 molten slag at 1673 K [J]. Acta Metall. Sin., 2015, 51: 1001
|
|
洪 川, 高运明, 杨创煌 等. 1673 K下SiO2-CaO-MgO-Al2O3熔渣中Ni2+的电化学行为 [J]. 金属学报, 2015, 51: 1001
|
24 |
Hu H B, Gao Y M, Lao Y G, et al. Yttria-stabilized zirconia aided electrochemical investigation on ferric ions in mixed molten calcium and sodium chlorides [J]. Metall. Mater. Trans., 2018, 49B: 2794
|
25 |
Gao Y M, Yang C H, Zhang C L, et al. Magnesia-stabilised zirconia solid electrolyte assisted electrochemical investigation of iron ions in a SiO2-CaO-MgO-Al2O3 molten slag at 1723 K [J]. Phys. Chem. Chem. Phys., 2017, 19: 15876
doi: 10.1039/C7CP01945A
|
26 |
Gao Y M, Huang Z B, He L, et al. Yttria-stabilized zirconia assisted green electrochemical preparation of silicon from solid silica in calcium chloride melt [J]. Metall. Mater. Trans., 2021, 52B: 1708
|
27 |
Zaykov Y P, Isakov A V, Zakiryanova I D, et al. Interaction between SiO2 and a KF-KCl-K2SiF6 melt [J]. J. Phys. Chem., 2014, 118B: 1584
|
28 |
Monnier R, Barakat D. Contribution à l'étude du comportement de la silice dans les bains de cryolithe fondue [J]. Helv. Chim. Acta, 1957, 40: 2041
doi: 10.1002/hlca.19570400706
|
29 |
Bøe G, Grjotheim K, Matiašovský K, et al. Electrolytic deposition of silicon and of silicon alloys Part II: Decomposition voltages of components and current efficiency in the electrolysis of the Na3AlF6-Al2O3-SiO2 mixtures [J]. Can. Metall. Quart., 1971, 10: 179
doi: 10.1179/cmq.1971.10.3.179
|
30 |
Bøe G, Grjotheim K, Matiašovský K, et al. Electrolytic deposition of silicon and of silicon alloys Part III: Deposition of silicon and aluminum using a copper cathode [J]. Can. Metall. Quart., 1971, 10: 281
doi: 10.1179/cmq.1971.10.4.281
|
31 |
Grjotheim K, Matiašovský K, Fellner P, et al. Electrolytic deposition of silicon and of silicon alloys Part I: Physicochemical properties of the Na3AlF6-Al2O3-SiO2 mixtures [J]. Can. Metall. Quart., 1971, 10: 79
doi: 10.1179/cmq.1971.10.2.79
|
32 |
Bøe G, Grjotheim K, Matiašovský K, et al. Electrolytic deposition of silicon and of silicon alloys. Part IV: Preparation of alloys with a high content of silicon, and silicon refining [J]. Can. Metall. Quart., 1972, 11: 463
doi: 10.1179/cmq.1972.11.3.463
|
33 |
FactSage. com [EB/OL]. [2021-03-20].
|
34 |
Liu A M, Guan J Z, Xie K Y, et al. Aluminothermic reduction-molten salt electrolysis of silica in cryolite melts [J]. J. Northeast. Univ. (Nat. Sci.), 2016, 37: 522
|
|
刘爱民, 管晋钊, 谢开钰 等. 冰晶石熔盐介质中铝热还原-熔盐电解二氧化硅 [J]. 东北大学学报(自然科学版), 2016, 37: 522
|
35 |
Well D F, Fyfe W S. The 1010 and 800oC isothermal section in the system Na3AlF6-Al2O3-SiO2 [J]. J. Electrochem. Soc., 1964, 111: 582
doi: 10.1149/1.2426187
|
36 |
Bao M G, Wang Z W, Gao B L, et al. Solubility of ZrO2 in cryolite-based molten salt system [J]. Adv. Mater. Res., 2014, 968: 67
|
37 |
Hou H J, Yang H C, Huangfu G L, et al. Factors affecting the loss on ignition of cryolite [J]. Light Met., 2004, (2): 10
|
|
侯红军, 杨华春, 皇甫根利 等. 冰晶石灼减的影响因素 [J]. 轻金属, 2004, (2): 10
|
38 |
Franke P, Neuschütz D. [Landolt-Börnstein—Group IV Physical Chemistry] Binary Systems. Part 4: Binary Systems from Mn-Mo to Y-Zr|| Si-Zr [M], 2006, 19B4: 1
|
39 |
Murray J L, Mcalister A J. The Al-Si (aluminum-silicon) system [J]. Bull. Alloy Phase Diagrams, 1984, 5: 74
doi: 10.1007/BF02868729
|
40 |
Chen G Z, Fray D J. Invention and fundamentals of the FFC Cambridge process [A]. Extractive Metallurgy of Titanium [M]. Amsterdam: Elsevier, 2020: 227
|
41 |
Gratz E S, Milshtein J D, Pal U B. Determining yttria-stabilized zirconia (YSZ) stability in molten oxy-fluoride flux for the production of magnesium with the SOM process [J]. J. Am. Ceram. Soc., 2013, 96: 3279
doi: 10.1111/jace.12449
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|