|
|
First-Principles Calculation on the Influence of Alloying Elements on Interfacial Features of W-Cu System |
GAI Yibing, TANG Fawei, HOU Chao, LU Hao, SONG Xiaoyan( ) |
Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China |
|
Cite this article:
GAI Yibing, TANG Fawei, HOU Chao, LU Hao, SONG Xiaoyan. First-Principles Calculation on the Influence of Alloying Elements on Interfacial Features of W-Cu System. Acta Metall Sin, 2020, 56(7): 1036-1046.
|
Abstract The W-Cu alloy has been widely applied in metallurgy, electronics, military and other fields because of its good arc-resistance, anti-welding, heat and electricity conducting etc. In the recent years, attention to the immiscible W-Cu alloy has been shifted to the problem of stabilizing the W/Cu interface by alloying. However, there are still research lacks of the mechanisms of diffusion, segregation of alloying elements in this alloy. It, obviously, will limit the further optimizing design for the W-Cu alloy. This work is focused on the first-principle study of the electronic structure of W/Cu interfaces. Calculations showed that the same alloying elements in W-Cu system may have significant differences in grain boundary segregation and interface segregation behavior, and related micromechanism was revealed. It was demonstrated that the relationship of the segregation energies of Sc, Ti, Y and In into W/Cu interfaces and grain boundaries of pure W and Cu were related to their stability. The correlation between segregation energy and interface stability was also disclosed by the first-principle interface calculation for W-Sc and W-Y systems. Further, combined with the solute segregation calculations for the W/Cu interfaces, W grain boundaries, Cu grain boundaries and the formation energy for the Cu solid solution, the criterion for solute optimizing selection for the W-Cu system was proposed. According to which, Y was selected as the candidate alloying element to stabilize the W/Cu interface. This work proposed a more universal method for the optimal alloying element selection and may provide a new design method for the development of high-performance W-Cu alloy.
|
Received: 25 November 2019
|
|
Fund: National Key Research and Development Program of China(2018YFB0703902);National Natural Science Foundation of China(51631002);National Funds for Distinguished Young Scholars(51425101) |
[1] |
Elsayed A, Li W, El Kady O A, et al. Experimental investigations on the synthesis of W-Cu nanocomposite through spark plasma sintering [J]. J. Alloys Compd., 2015, 639: 373
|
[2] |
Liang S H, Chen L, Yuan Z X, et al. Infiltrated W-Cu composites with combined architecture of hierarchical particulate tungsten and tungsten fibers [J]. Mater. Charact., 2015, 110: 33
|
[3] |
Wei X X, Tang J C, Ye N, et al. A novel preparation method for W-Cu composite powders [J]. J. Alloys Compd., 2016, 661: 471
doi: 10.1016/j.jallcom.2015.11.158
|
[4] |
Zhou Q, Chen P W. Fabrication of W-Cu composite by shock consolidation of Cu-coated W powders [J]. J. Alloys Compd., 2016, 657: 215
|
[5] |
Calvo M, Jakus A E, Shah R N, et al. Microstructure and processing of 3D printed tungsten microlattices and infiltrated W-Cu composites [J]. Adv. Eng. Mater., 2018, 20: 1800354
|
[6] |
Chen W G, Dong L L, Zhang H, et al. Microstructure characterization of W-Cu alloy sheets produced by high temperature and high pressure deformation technique [J]. Mater. Lett., 2017, 205: 198
|
[7] |
Li L Y, Li J S, He Y X, et al. Tensile properties and deformation micromechanism of Ti-based metallic glass composite containing impurity elements [J]. J. Alloys Compd., 2019, 784: 220
|
[8] |
Li L L, Saber M, Xu W Z, et al. High-temperature grain size stabilization of nanocrystalline Fe-Cr alloys with Hf additions [J]. Mater. Sci. Eng., 2014, A613: 289
|
[9] |
Chen P G, Shen Q, Luo G Q, et al. The mechanical properties of W-Cu composite by activated sintering [J]. Int. J. Refract. Met. Hard Mater., 2013, 36: 220
|
[10] |
Chen P G, Luo G Q, Shen Q, et al. Thermal and electrical properties of W-Cu composite produced by activated sintering [J]. Mater. Des., 2013, 46: 101
|
[11] |
Li Y, Zhang J, Luo G Q, et al. Densification and properties investigation of W-Cu composites prepared by electroless-plating and activated sintering [J]. Int. J. Refract. Met. Hard Mater., 2018, 71: 255
|
[12] |
Borji S, Ahangarkani M, Zangeneh-Madar K, et al. The effect of sintering activator on the erosion behavior of infiltrated W-10wt% Cu composite [J]. Int. J. Refract. Met. Hard Mater., 2017, 66: 150
|
[13] |
Chookajorn T, Murdoch H A, Schuh C A. Design of stable nanocrystalline alloys [J]. Science, 2012, 337: 951
pmid: 22923577
|
[14] |
Kawazoe Y. How well can physical, chemical, and mechanical properties of materials be predicted by ab initio techniques? [J]. Mater. Des., 2001, 22: 61
|
[15] |
Braithwaite J S, Rez P. Grain boundary impurities in iron [J]. Acta Mater., 2005, 53: 2715
|
[16] |
Yamaguchi M, Kaburaki H, Shiga M. Energetics of segregation and embrittling potency for non-transition elements in the Ni Σ5(012) symmetrical tilt grain boundary: A first-principles study [J]. J. Phys.: Condens. Mater., 2004, 16: 3933
|
[17] |
Liang C P, Fan J L, Gong H R. Cohesion strength and atomic structure of W-Cu graded interfaces [J]. Fusion Eng. Des., 2017, 117: 20
|
[18] |
Terakura K, Oguchi T, Mohri T, et al. Electronic theory of the alloy phase stability of Cu-Ag, Cu-Au, and Ag-Au systems [J]. Phys. Rev., 1987, 35B: 2169
|
[19] |
Jiang D Y. First-principles study on mechanical properties of tungsten alloys for plasma facing materials [D]. Nanchang: Nanchang University, 2017
|
|
(姜迪友. 面向等离子体材料钨合金力学性质的第一性原理研究 [D]. 南昌: 南昌大学, 2017)
|
[20] |
Wu X B, You Y W, Kong X S, et al. First-principles determination of grain boundary strengthening in tungsten: Dependence on grain boundary structure and metallic radius of solute [J]. Acta Mater., 2016, 120: 315
|
[21] |
Zhou H B, Jin S, Zhang Y, et al. Effects of hydrogen on a tungsten grain boundary: A first-principles computational tensile test [J]. Prog. Nat. Sci.: Mater. Int., 2011, 21: 240
|
[22] |
Ahangarkani M, Borji S, Zangeneh-Madar K, et al. Mutual relationship between material removal rate and W-W interfacial features during ultra-high temperature erosion of infiltrated W-10wt.% Cu composite [J]. Int. J. Refract. Met. Hard Mater., 2018, 75: 191
|
[23] |
Tang F W, Liu X M, Wang H B, et al. Solute segregation and thermal stability of nanocrystalline solid solution systems [J]. Nanoscale, 2019, 11: 1813
pmid: 30631871
|
[24] |
Chookajorn T, Schuh C A. Nanoscale segregation behavior and high-temperature stability of nanocrystalline W-20 at.% Ti [J]. Acta Mater., 2014, 73: 128
|
[25] |
Chookajorn T, Park M, Schuh C A. Duplex nanocrystalline alloys: entropic nanostructure stabilization and a case study on W-Cr [J]. J. Mater. Res., 2015, 30: 151
|
[26] |
Wang Q, Tang F W, Hou C, et al. First-principles calculations of solute-segreagtion of W-In alloys at grain boundaries [J]. Acta Phys. Sin., 2019, 68: 077101
|
|
(王 奇, 唐法威, 侯 超等. W-In体系溶质晶界偏聚行为的第一性原理计算 [J]. 物理学报, 2019, 68: 077101)
|
[27] |
Zhu Y D, Yan M F, Zhang Y X, et al. First-principles investigation of structural, mechanical and electronic properties for Cu-Ti intermetallics [J]. Comput. Mater. Sci., 2016, 123: 70
|
[28] |
Scheiber D, Pippan R, Puschnig P, et al. Ab initio search for cohesion-enhancing solute elements at grain boundaries in molybdenum and tungsten [J]. Modell. Simul. Mater. Sci., 2016, 24: 085009
|
[29] |
Scheiber D, Pippan R, Puschnig P, et al. Ab-initio search for cohesion-enhancing solute elements at grain boundaries in molybdenum and tungsten [J]. Int. J. Refract. Met. Hard Mater., 2016, 60: 75
|
[30] |
Seyring M, Song X Y, Rettenmayr M. Advance in orientation microscopy: Quantitative analysis of nanocrystalline structures [J]. ACS Nano, 2011, 5: 2580
pmid: 21375327
|
[31] |
Tang F W, Song X Y, Hou C, et al. Modeling of Li diffusion in nanocrystalline Li-Si anode material [J]. Phys. Chem. Chem. Phys., 2018, 20: 7132
pmid: 29479582
|
[32] |
Kronberg M L, Wilson F H. Secondary recrystallization in copper [J]. JOM, 1949, 1(8): 501
|
[33] |
He W H, Gao X, Pang L L, et al. First-principles investigation of vacancies in LiTaO3 [J]. J. Phys.: Condens. Mater., 2016, 28: 315501
doi: 10.1088/0953-8984/28/31/315501
|
[34] |
Wang X M, Qin X G. The influence of 5 tilt grain boundaries of copper nanoparticles on sintering behavior [J]. Chin. J. Stereol. Image Anal., 2016, 21: 279
|
|
(王晓勉, 秦湘阁. 5晶界对铜纳米颗粒烧结行为的影响 [J]. 中国体视学与图像分析, 2016, 21: 279)
|
[35] |
Yang G Y, Liu Y, Hang Z Q, et al. Adhesion at cerium doped metal-ceramic α-Fe/WC interface: A first-principles calculation [J]. J. Rare Earth., 2019, 37: 773
doi: 10.1016/j.jre.2018.11.009
|
[36] |
Jaouen M, Pacaud J, Jaouen C. Elastic strains and enhanced stress relaxation effects induced by ion irradiation in W(110)/Cu(111) multilayers: Comparative EXAFS and X-ray diffraction studies [J]. Phys. Rev., 2001, 64B: 144106
|
[37] |
Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: Ideas, illustrations and the CASTEP code [J]. J. Phys.: Condens. Mater., 2002, 14: 2717
doi: 10.1088/0953-8984/14/11/301
|
[38] |
Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev., 1990, 41B: 7892
|
[39] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865
pmid: 10062328
|
[40] |
Li Z W, Kong X S, Liu C S, et al. Segregation of alloying atoms at a tilt symmetric grain boundary in tungsten and their strengthening and embrittling effects [J]. Chin. Phys., 2014, 23B: 106107
|
[41] |
Scheiber D, Razumovskiy V I, Puschnig P, et al. Ab initio description of segregation and cohesion of grain boundaries in W-25 at.% Re alloys [J]. Acta Mater., 2015, 88: 180
doi: 10.1016/j.actamat.2014.12.053
|
[42] |
Wolverton C, Ozoliņš V, Asta M. Hydrogen in aluminum: First-principles calculations of structure and thermodynamics [J]. Phys. Rev., 2004, 69B: 144109
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|