Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (11): 1315-1324    DOI: 10.11900/0412.1961.2015.00033
Current Issue | Archive | Adv Search |
STUDY ON HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY OF 1000 MPa GRADE 0Cr16Ni5Mo STEEL
Yongwei SUN1,Jizhi CHEN1,2(),Jun LIU2
1 College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001
2 Luoyang Ship Material Research Institute, Luoyang 471000
Cite this article: 

Yongwei SUN,Jizhi CHEN,Jun LIU. STUDY ON HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY OF 1000 MPa GRADE 0Cr16Ni5Mo STEEL. Acta Metall Sin, 2015, 51(11): 1315-1324.

Download:  HTML  PDF(1316KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

0Cr16Ni5Mo steel is the most popular material used for fasteners and bolts in the marine engineering equipment. With the light weight trend of equipment, the strength grades of the steel become higher. 0Cr16Ni5Mo steel combines high strength, high hardness and high fracture toughness with good ductility. However, high strength steel is prone to degradation by hydrogen, resulting in the loss of its excellent mechanical properties. And the presence of diffusible hydrogen near a notch tip is easily to cause crack propagation. The susceptibility to hydrogen embrittlement of steel is largely determined by the hydrogen diffusivity and the behaviors of hydrogen trapping in the steel. Therefore, the hydrogen trapping behaviors of 1000 MPa grade 0Cr16Ni5Mo steel have been investigated by means of thermal desorption spectroscopy (TDS). Meanwhile, the hydrogen embrittlement susceptibility of the notch and smooth specimens was evaluated by slow strain rate tests (SSRT), and the fracture morphology was also observed. The results showed that the main hydrogen traps of experimental steel was contained dislocations and grain boundaries. The elongation of hydrogen charged specimens was decreased obviously rather than tensile strength. With the increase in hydrogen concentration, the fracture surfaces of hydrogen charged specimens was displayed a transition from ductile microvoid coalescence to a mixed morphology of dimples, quasi-cleavage and intergranular features. The steel had little irreversible hydrogen due to less C content, and had much susceptibility with reversible hydrogen contained. The model of hydrogen induced stress was calculated on basis of Eshelby equivalent inclusion, validating the relationship between stress concentration and hydrogen concentration.

Key words:  0Cr16Ni5Mo steel      hydrogen embrittlement      hydrogen trapping      Eshelby equivalent inclusion     

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00033     OR     https://www.ams.org.cn/EN/Y2015/V51/I11/1315

Fig.1  Schematics of shape and dimension of slow strain rate test (SSRT) specimens (unit: mm)

(a) notched specimen (b) smooth specimen

Fig.2  OM image (a) and TEM image (b) of 0Cr16Ni5Mo steel after quenching and tempering at 793.15 K
Fig.3  Thermal desorption spectroscopy (TDS) curves (a) of 0Cr16Ni5Mo steel and data fitting (b) (Φ—heating rate, Tp—peak temperature, r—correlation coefficient)
Fig.4  SSRT curves of notched specimens of 0Cr16Ni5Mo steel with different hydrogen concentration (CH) at room temperature (RT)
Fig.5  Low (a, c, e) and high (b, d, f) magnified SEM images of fracture surface in the notched specimens of 0Cr16Ni5Mo steel with different CH after SSRT

(a, b) hydrogen uncharged (c, d) CH=5.4×10-6 (e, f) CH=6.6×10-6

Fig.6  SSRT curves of smooth specimens of 0Cr16Ni5Mo steel with different CH at RT
Fig.7  Relationships of reduction of area vs CH (a) and elongation vs CH (b) of smooth specimens of 0Cr16Ni5Mo steel at RT
Fig.8  Low (a, c, e) and high (b, d, f) magnified SEM images of fracture surface in the smooth specimens of 0Cr16Ni5Mo steel with different CH after SSRT

(a, b) hydrogen uncharged (c, d) CH=5.2×10-6 (e, f) CH=9.5×10-6

Fig.9  Schematics of Eshelby model (W—a volume element, C0—hydrogen concentration in the initial state, C—hydrogen concentration in the current state, eH—unconstrained dilatation strain)
Fig.10  Variation of the hydrogen induced stress concentration (sn) vs hydrogen concentration (C0) of notched specimen without constraint
[1] Kuduzovi? A, Poletti M C, Sommitsch C, Domankova M, Mitsche S, Kienreich R. Mater Sci Eng, 2014; A590: 66
[2] Tian Y, Wang M Q, Li J X, Shi J, Hui W J, Dong H. Acta Metall Sin, 2008; 44: 403 (田 野, 王毛球, 李金许, 时 捷, 惠卫军, 董 瀚. 金属学报, 2008; 44: 403)
[3] Li H L, Hui W J, Wang Y B, Dong H, Weng Y Q, Chu W Y. Acta Metall Sin, 2001; 37: 512 (李会录, 惠卫军, 王燕斌, 董 瀚, 翁宇庆, 褚武扬. 金属学报, 2001; 37: 512)
[4] Xiao J M. Acta Metall Sin, 1997; 33: 113 (肖纪美. 金属学报, 1997; 33: 113)
[5] Chu W Y,Qiao L J,Li J X,Su Y J,Yan Y,Bai Y,Ren X C,Huang H Y. Hydrogen Embrittlement and Stress Corrosion Cracking. Beijing: Science Press, 2013: 557 (褚武扬,乔利杰,李金许,宿彦京,岩 雨,白 洋,任学冲,黄海友. 氢脆和应力腐蚀. 北京: 科学出版社, 2013: 557)
[6] Hui W J,Weng Y Q,Dong H. The Steels of High-Strength Fasteners. Beijing: Metallurgical Industry Press, 2009: 64 (惠卫军,翁宇庆,董 瀚. 高强度紧固件用钢. 北京: 冶金工业出版社, 2009: 64)
[7] Ham J, Jang Y, Lee G, Kim B, Rhee K, Cho C. Mater Sci Eng, 2013; A581: 83
[8] Fransplass H, Langseth M, Hopperstad O S. Int J Mechani Sci, 2011; 53: 946
[9] Chu W Y, Li J X, Huang Z H. Corrosion, 1999; 55: 892
[10] Troiano A R. Trans ASM, 1960; 52: 54
[11] Oriani R A. Acta Metall, 1970; 18: 147
[12] Thomans D. Acta Metall Mater, 1994; 42: 2043
[13] Birnbaum H K, Sofronis P. Mater Sci Eng, 1994; A176: 191
[14] Yokota T, Shiraga T. ISIJ Int, 2003; 43: 534
[15] Kissinger H E. Anal Chem, 1982; 29: 135
[16] Gu J L, Chang K D, Fang H S, Bai B Z. ISIJ Int, 2002; 42: 1560
[17] Pressouyre G M. Metall Trans, 1979; 10A: 1571
[18] Escobar D P, Verbeken K, Duprez L. Mater Sci Eng, 2012; A551: 50
[19] Hirth J P. Metall Trans, 1980; 11A: 861
[20] Sofronis P, Birnbaum H K. J Mech Phys Solids, 1995; 43: 49
[21] Nabarro F R N. Proc Roy Soc, 1940; 175A: 519
[22] Li J C M, Oriani R A, Darken L S. Z Physik Chem Neue Folge, 1966; 49: 271
[23] Sofronis P, McMeeking R M. J Mech Phys Solids, 1989; 37: 317
[24] Chateau J P, Delafosse D, Magnin T. Acta Mater, 2002; 50: 1507
[25] Eshelby J D. Proc Roy Soc, 1957; 241A: 376
[26] Li H L, Chu W Y, Gao K W, Qiao L J. Acta Metall Sin, 2002; 38: 849 (李会录, 褚武扬, 高克玮, 乔利杰. 金属学报, 2002; 38: 849)
[27] Hardie D, Liu S E. Corros Sci, 1996; 38: 721
[28] Nagao A, Smith C D, Dadfarnia M, Sofronis P, Robertson I M. Proce Mater Sci, 2014; 3: 1700
[29] Robertson I M. Eng Fract Mech, 1999; 64: 649
[30] Abhay K J, Narayanan P R, Sreekumar K, Mittal M C, Ninan K N. Eng Fail Analy, 2008; 15: 431
[1] XIAO Na, HUI Weijun, ZHANG Yongjian, ZHAO Xiaoli. Hydrogen Embrittlement Behavior of a Vacuum-Carburized Gear Steel[J]. 金属学报, 2021, 57(8): 977-988.
[2] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[3] LI Jinxu,WANG Wei,ZHOU Yao,LIU Shenguang,FU Hao,WANG Zheng,KAN Bo. A Review of Research Status of Hydrogen Embrittlement for Automotive Advanced High-Strength Steels[J]. 金属学报, 2020, 56(4): 444-458.
[4] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[5] Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel[J]. 金属学报, 2019, 55(6): 792-800.
[6] Xiaoli ZHAO, Yongjian ZHANG, Chengwei SHAO, Weijun HUI, Han DONG. Hydrogen Embrittlement of Intercritically AnnealedCold-Rolled 0.1C-5Mn Steel[J]. 金属学报, 2018, 54(7): 1031-1041.
[7] Jun SUN, Suzhi LI, Xiangdong DING, Ju LI. Hydrogenated Vacancy: Basic Properties and Its Influence on Mechanical Behaviors of Metals[J]. 金属学报, 2018, 54(11): 1683-1692.
[8] Xiaoyu ZHAO, Feng HUANG, Lijun GAN, Qian HU, Jing LIU. Hydrogen-Induced Cracking Susceptibility and Hydrogen Trapping Efficiency of the Welded MS X70 Pipeline Steel in H2S Environment[J]. 金属学报, 2017, 53(12): 1579-1587.
[9] YAN Erhu, LI Xinzhong, TANG Ping, SU Yanqing, GUO Jingjie, FU Hengzhi. MICROSTRUCTURE AND HYDROGEN PERMEATION CHARACTERISTIC OF NEAR EUTECTIC Nb-Ti-Co HYDROGEN SEPARATION ALLOY[J]. 金属学报, 2014, 50(1): 71-78.
[10] LIU Yu, LI Yan, LI Qiang. EFFECT OF CATHODIC POLARIZATION ON HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY OF X80 PIPELINE STEEL IN SIMULATED DEEP SEA ENVIRONMENT[J]. 金属学报, 2013, 49(9): 1089-1097.
[11] WANG Yanfei GONG Jianming JIANG Wenchun JIANG Yong TANG Jianqun . NUMERICAL SIMULATION OF HYDROGEN INDUCED DELAYED FRACTURE OF AISI4135 HIGH STRENGTH STEEL USING COHESIVE ZONE MODELING[J]. 金属学报, 2011, 47(5): 594-600.
[12] LI Yiyi FAN Cungan RONG Lijian YAN Desheng LI Xiuyan. HYDROGEN EMBRITTLEMENT RESISTANCE OF AUSTENITIC ALLOYS AND ALUMINIUM ALLOYS[J]. 金属学报, 2010, 46(11): 1335-1346.
[13] Jian ZHANG. EFFECTS OF GRAIN-BOUNDARY PHASES ON HYDROGEN EMBRITTLEMENT OF FE-NI-CR AUSTENITIC ALLOY BY INTERNAL FRICTION[J]. 金属学报, 2008, 44(9): 1095-1098 .
[14] ;. Microstructures and Hydrogen Permeation Characteristics of Nb-Ti-Ni Alloys[J]. 金属学报, 2008, 44(7): 781-785 .
[15] tian ye; WANG Mao-Qiu; Jinxu Li. HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY OF 40CrNi3MoV STEELS WITH THE STRENGTH LEVEL OF 1500MPa[J]. 金属学报, 2008, 44(4): 403-408 .
No Suggested Reading articles found!