|
|
SURFACE LAYER HIGH-ENTROPY STRUCTURE AND ANTI-CORROSION PERFORMANCE OF AERO-ALUMINUM ALLOY INDUCED BY LASER SHOCK PROCESSING |
LUO Xinmin1( ), WANG Xiang1, CHEN Kangmin1,2, LU Jinzhong3, WANG Lan1, ZHANG Yongkang4 |
1 School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 2 Analysis and Test Center, Jiangsu University, Zhenjiang 212013 3 School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 4 School of Mechanical Engineering, Southeast University, Nanjing 210089 |
|
Cite this article:
LUO Xinmin, WANG Xiang, CHEN Kangmin, LU Jinzhong, WANG Lan, ZHANG Yongkang. SURFACE LAYER HIGH-ENTROPY STRUCTURE AND ANTI-CORROSION PERFORMANCE OF AERO-ALUMINUM ALLOY INDUCED BY LASER SHOCK PROCESSING. Acta Metall Sin, 2015, 51(1): 57-66.
|
Abstract 7075 aluminum alloy is an ultra-high strength alloy containing Al, Zn, Mg, Cu and Cr elements, and is widely used in the aviation industry, but it has severe intergranular corrosion characteristics. The high-entropy alloys are composed of more than five major metallic elements and possess excellent corrosion resistance. When laser shock, featuring ultra high energy as well as the thermodynamic and kinetic loading characteristics far-from-equilibrium states, acts on the surface of alloys with multiple elements, high-entropy alloy surface layer with specific properties may be obtained. In this work, surface modification of 7075-T76 aluminum alloy by laser shock was investigated. The microstructure, formation cause of the amorphous/nano-crystalline composite high-entropy alloy surface layer obtained by laser shock, hardness and corrosion resistance of the laser were analyzed by means of SEM and TEM. The results show that the adiabatic shear thermal effect induced by super high energy, ultra-fast process of laser shock causes surface alloy system to occur entropy increase effect and partitioning. The high mixing entropy contributes to the randomization increase of the alloy system. Thus, the elements in the system spontaneously self-organize in accordance with the law of Boltzmann. The dynamical formation of the nano-crystalline grains coordinates the thermodynamic equilibrium during the process. The strain-hardened layer is composed of amorphous microstructure and nanocrystalline grains, and the total depth of it reaches up to about 100 μm. After 1 time laser shock,the depth of the surface high entropy layer is about 20 μm, of which the diameter of the nanocrystalline grains is 6~8 nm. After 3 times laser shock, the thickness of the layer can increase to more than 40 μm, and the diameter of the nanocrystalline grains is 2~3 nm. Meanwhile, the intense ultra high strain-rate induced by the laser shock makes precipitates deform, producing parallelly distribution of deformation twins in order to balance the laser energy. After repeated laser shocks, the hardness of the amorphous/nanocrystalline layer gradually closes to that of the matrix of the alloy because of the disappearing of the support of grain boundaries to the strength, the dislocation strengthening effect in nano-crystalline grains, and the coherent relationship between precipitates and matrix. Due to that the amorphous microstructure can prevent galvanic effect around precipitates, and nano-crystalline has good chemical stability, the nano-crystalline/amorphous composite high-entropy layer on surface of 7075-T76 aluminum alloy induced by laser shock can significantly improve the corrosion resistance, and effectively block the intergranular corrosion of the alloy.
|
|
|
Fund: Supported by National Natural Science Foundation of China (Nos.51275220 and 51105179) |
[1] |
Fairand B P, Wilcox B A, Gallagher W J. Appl Phys, 1972; 43: 3893
|
[2] |
Gomez R G, Rubio G C, Ocaña J L. Appl Surf Sci, 2010; 256: 5828
|
[3] |
Hatamleh O, Lyons J, Forman R. Int J Fatigue, 2007; 29: 421
|
[4] |
Lu J Z, Luo K Y, Zhang Y K, Cui C Y, Sun G F, Zhou J Z, Zhang L, You J, Chen K M, Zhong J W. Acta Mater, 2010; 58: 3984
|
[5] |
Wu B, Wang S B, Guo D H, Wu H X. Acta Opt Sin, 2005; 25: 1352
|
|
(吴 边, 王声波, 郭大浩, 吴鸿兴. 光学学报, 2005; 25: 1352)
|
[6] |
Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y. Adv Eng Mater, 2004; 6: 299
|
[7] |
Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Zhao P L. Prog Mater Sci, 2014; 61(4): 1
|
[8] |
Daniel B, Miracle J D, Miller O N, Senkov C W, Michael D U, Tiley J. Entropy, 2014; 16: 494
|
[9] |
Ren M X, Li B S, Fu H Z. Trans Nonferrous Met Soc China, 2013; 23: 991
|
[10] |
Sun H F. Master Thesis, Shandong University of Science and Technology, Jinan, 2009
|
|
(孙宏飞. 山东科技大学硕士学位论文, 济南, 2009)
|
[11] |
Zhang H, Pan Y, He Y Z. Acta Metall Sin, 2011; 47: 1075
|
|
(张 晖, 潘 冶, 何宜柱. 金属学报, 2011; 47: 1075)
|
[12] |
Chen M, Liu Y, Li Y X, Chen X. Acta Metall Sin, 2007; 43: 1020
|
|
(陈 敏, 刘 源, 李言祥, 陈 祥. 金属学报, 2007; 43: 1020)
|
[13] |
Song C H, Gan Z H, Lu Z H, Chen H J, Huang F. J Mater Sci Eng, 2011; 29: 747
|
|
(宋春晖, 甘章华, 卢志红, 陈汉杰, 黄 峰. 材料科学与工程学报, 2011; 29: 747)
|
[14] |
Zhou Y J, Zhang Y, Wang Y L, Chen G L. Rare Met Mater Eng, 2007; 36: 2136
|
|
(周云军, 张 勇, 王艳丽, 陈国良. 稀有金属材料与工程, 2007; 36: 2136)
|
[15] |
Yu Y, Xie F Q, Zhang T B, Kou H C, Hu R, Li J S. Rare Met Mater Eng, 2012; 41: 862
|
|
(于 源, 谢发勤, 张铁邦, 寇宏超, 胡 锐, 李金山. 稀有金属材料与工程, 2012; 41: 862)
|
[16] |
Liu S Q, Huang W G. Mater Eng, 2012; (1): 5
|
|
(刘恕骞, 黄维刚. 材料工程, 2012; (1): 5)
|
[17] |
Zhang S, Wu C L, Wang C, Yi J Z, Zhang C H. Acta Metall Sin, 2014; 50: 555
|
|
(张 松, 吴臣亮, 王 超, 伊俊振, 张春华. 金属学报, 2014; 50: 555 )
|
[18] |
Yue T M, Xie H, Lin X, Yang H O, Meng G H. Entropy, 2013; 15: 2833
|
[19] |
Zhang Y K, Xu X J, Luo Y, Song T, Wang H Y, Wu G C, Zhang Z Q. Rare Met Mater Eng, 2012; 41(Suppl 2): 612
|
|
(张允康, 许晓静, 罗 勇, 宋 涛, 王宏宇, 吴桂潮, 张振强. 稀有金属材料与工程, 2012; 41(增刊2): 612)
|
[20] |
Ning A L, Liu Z Y, Feng C, Zeng S M. Acta Metall Sin, 2006; 42: 1253
|
|
(宁爱林, 刘志义, 冯 春, 曾苏民. 金属学报, 2006; 42: 1253)
|
[21] |
Ren N F, Zhang Y K. Appl Laser, 1997; 17: 105
|
|
(任乃飞, 张永康. 应用激光, 1997; 17: 105)
|
[22] |
Tian Y Q, Zhang H J, Chen L S, Song J Y, Xu Y, Zhang S H. Acta Metall Sin, 2014; 50: 531
|
|
(田亚强, 张宏军, 陈连生, 宋进英, 徐 勇, 张士宏. 金属学报, 2014; 50: 531)
|
[23] |
Inoue A, Takauchi A. Mater Trans, 2002; 43: 1892
|
[24] |
Liang X B, Zhang Z B, Chen Y X, Xu B S. Acta Metall Sin, 2012; 48: 289
|
|
(梁秀兵, 张志彬, 陈永雄, 徐滨士. 金属学报, 2012; 48: 289)
|
[25] |
Wang Z L. Master Thesis, Northeastern University, Shenyang, 2009
|
|
(王志良. 东北大学硕士学位论文, 沈阳, 2009)
|
[26] |
Zhang J. J Chin Rare Earth Soc, 2006; 24(10): 40
|
|
(张 鉴. 中国稀土学报, 2006; 24(10): 40)
|
[27] |
Lang Y J, Cui H, Cai Y H, Zhang J S. Chin J Mater Res, 2012; 26: 143
|
|
(郎玉婧, 崔 华, 蔡元华, 张济山. 材料研究学报, 2012; 26: 143)
|
[28] |
Wang Y, Zhang W L, Sun D B, Li H Q. J Mater Sci Eng, 2006; 24: 292
|
|
(王 玉, 张文礼, 孙冬柏, 李辉勤. 材料科学与工程学报, 2006; 24: 292)
|
[29] |
Zhu L F, Li Y C, Hu X Z, Dong J. Acta Mech Solid Sin, 2005; 26: 37
|
|
(朱林法, 李永池, 胡秀章, 董 杰. 固体力学学报, 2005; 26: 37)
|
[30] |
Rosakis P, Rosakis A J, Ravichandran G, Hodowany J. J Mech Phys Solids, 2000; 48: 581
|
[31] |
Luo X M, Zhang J W, Ma H, Zhang Y K, Chen K M, Ren X D, Luo K Y. Acta Opt Sin, 2011; 31: 714002-1
|
|
(罗新民, 张静文, 马 辉, 张永康, 陈康敏, 任旭东, 罗开玉. 光学学报, 2011; 31: 714002-1)
|
[32] |
Luo X M, Chen K M, Zhang J W, Lu J Z, Ren X D, Luo K Y, Zhang Y K. Acta Metall Sin, 2013; 49: 667
|
|
(罗新民, 陈康敏, 张静文, 鲁金忠, 任旭东, 罗开玉, 张永康. 金属学报, 2013; 49: 667)
|
[33] |
Luo X M, Zhao G Z, Yang K, Chen K M, Zhang X N, Zhang Y K, Luo K Y, Ren X D. Chin J Lasers, 2011; 39: 0603001-1
|
|
(罗新民, 赵广志, 杨 坤, 陈康敏, 张晓柠, 张永康, 罗开玉, 任旭东. 中国激光, 2011; 39: 0603001-1)
|
[34] |
Sui M L, Wang Y B, Cui J P, Li B Q. J Chin Electr Microsc Soc, 2010; 29: 219
|
|
(隋曼龄, 王艳波, 崔静萍, 李白清. 电子显微学报, 2010; 29: 219)
|
[35] |
Wan C Y, Chen J H, Yang X B, Liu J Z, Wu C L, Zhao X Q. J Chin Electr Microsc Soc, 2010; 29: 455
|
|
(万彩云, 陈江华, 杨修波, 刘吉梓, 伍翠兰, 赵新奇. 电子显微学报, 2010; 29: 455)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|