Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (12): 1478-1484    DOI: 10.11900/0412.1961.2014.00248
Current Issue | Archive | Adv Search |
EFFECT OF THERMAL EXPOSURE AT 750 ℃ ON ROOM TEMPERATURE TENSILE DUCTILITY OF CAST TiAl ALLOY WITH DIRECTIONAL LAMELLAR MICROSTRUCTURE
ZHU Chunlei, LI Sheng, LI Haizhao, ZHANG Ji()
Beijing Key Laborary of Advanced High Temperature Materials, Central Iron and Steel Research Institute,Beijing 100081
Cite this article: 

ZHU Chunlei, LI Sheng, LI Haizhao, ZHANG Ji. EFFECT OF THERMAL EXPOSURE AT 750 ℃ ON ROOM TEMPERATURE TENSILE DUCTILITY OF CAST TiAl ALLOY WITH DIRECTIONAL LAMELLAR MICROSTRUCTURE. Acta Metall Sin, 2014, 50(12): 1478-1484.

Download:  HTML  PDF(3565KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of thermal exposure on room temperature tensile ductility of cast TiAl alloy with directional lamellar microstructure was evaluated at 750 ℃ for 48~300 h in atmosphere. By preloading, unloading, dye-penetrating followed by reloading until fracture for exposed samples, initiation and propagation behavior of the microcrack triggered by surface brittle layer was mainly analyzed in order to explain that the directional lamellar structure retains a better ductility at room temperature after thermal exposure. The results show that room temperature tensile ductility is still retained above 2.0% and 1.0% after exposure for 150 and 300 h at 750 ℃, respectively. The embrittlement of the directional lamellar microstructure caused by thermal exposure is much less than that of duplex microstructure and the other lamellar microstructures. At a stress of 430 MPa, the microcrack forms at the Al-depleted brittle layer and propagates into the substrate during subsequent loading. Just as the sharp notch, the microcrack can constrain the plastic deformation, which is the main mechanism of the brittlement for TiAl alloy by thermal exposure. The directional lamellar microstructure with the lamellae interface parallel to the substrate surface is obtained, which is good for restraining the micro-crack propagation into the substrate and retaining higher ductility at room temperature after thermal exposure.

Key words:  TiAl alloy      directional lamellar microstructure      thermal exposure      room temperature ductility      microcrack     
ZTFLH:  TG146.2  
Fund: Supported by National Basic Research Program of China (No.2011CB605500)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00248     OR     https://www.ams.org.cn/EN/Y2014/V50/I12/1478

Fig.1  Strength (a) and plastic elongation (b) of TiAl alloy with directional lamellar microstructure after exposure for different times at 750 ℃
Fig.2  Morphology of surface reaction layer of TiAl alloy with directional lamellar microstructure after exposure at 750 ℃ for 200 h
Distance from substrate / μm O Ti Al V Cr
1 0 63.88 31.36 3.61 1.15
3 5.23 60.34 30.24 3.27 0.93
5 20.78 46.22 29.73 1.80 1.48
Table 1  EPMA results for Al-depleted layer after exposure at 750 ℃ for 200 h
Fig.3  Morphology of microcrack near fracture surface for TiAl alloy with directional lamellar microstructure exposed at 750 ℃ for 200 h (The arrow indicates the microcrack)
Fig.4  Morphologies of microcrack initiating at Al-depleted layer and running through surface reaction layer when unloaded at 430 MPa (a) and microcrack running through surface reaction layer followed by propagating into the substrate when unloaded at 450 MPa (b) of TiAl alloy
Fig.5  Morphology of microcrack propagating into the substrate unloaded at 500 MPa of TiAl alloy
Fig.6  Fractography of TiAl alloy unloaded at 500 MPa followed by dye-penetrating and reloading until fracture
Fig.7  Morphologies of microcrack deflecting along the lamellae interface (a) and ligament forming in the lamellar zone (b) with the lamellar interface parallel to the surface for TiAl alloy unloaded at 450 MPa
[1] Lu M, Barrett J R, Kelly T J. In: Hemker K J, Dimiduk D M, Clemens H, Darolia R, Inui H, Larsen J M, Sikka V K, Thomas M, Whittenberger J D eds., Structural Intermetallics 2001, Warrendale PA: TMS, 2001: 225
[2] Tetsui T. Mater Sci Eng, 2002; A329-331: 582
[3] Kim Y W. Mater Sci Eng, 1995; A192-193: 519
[4] Huang S C. In: Darolia R, Lewandowski J J, Liu C T, Martin P L, Miracle D B, Nathal M V eds., Structural Intermetallics 1993, Warrendale PA: TMS, 1993: 299
[5] Dowling W E, Donlon W T. Scr Metall Mater, 1992; 27: 1663
[6] Kelly T J, Austin C M, Fink P J, Schaeffer J. Scr Metall Mater, 1994; 30: 1105
[7] Lee D S, Stucke M A, Dimiduk D M. Mater Sci Eng, 1995; A192-193: 824
[8] Draper S L, Lerch B A, Locci I E, Shazly M, Prakash V. Intermetallics, 2005; 13: 1014
[9] Pilone D, Felli F, Brotzu A. Intermetallics, 2013; 40: 131
[10] Wu X H, Huang A, Hu D, Loretto M H. Intermetallics, 2009; 17: 540
[11] Pather R, Mitten W A, Holdway P, Ubhi H S, Wisbey A, Brooks J W. Intermetallics, 2003; 11: 1015
[12] Zhang J, Zhong Z Y. Mater China, 2010; 29(2): 9
(张 继, 仲增墉. 中国材料进展, 2010; 29(2): 9)
[13] Zhu C L, Zhang X W, Li S, Zhang J. Rare Met Mater Eng, 2014; 43(9): 2124
(朱春雷, 张熹雯, 李 胜, 张 继. 稀有金属材料与工程, 2014; 43(9): 2124)
[14] Planck S K, Rosenberger A H. Mater Sci Eng, 2002; A325: 270
[15] Shida Y, Anada H. Corros Sci, 1993; 35(5~8): 945
[16] Lu W, Chen C L, Xi Y J, Wang F H, He L L. Intermetallics, 2007; 15: 989
[17] Yokoshima S, Yamaguchi M. Acta Mater, 1996; 44: 873
[18] Thomas M, Berteaux O, Popoff F, Bacos M P, Morel A, Passilly B, Ji V. Intermetallics, 2006; 14: 1143
[1] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[2] LIU Renci, WANG Peng, CAO Ruxin, NI Mingjie, LIU Dong, CUI Yuyou, YANG Rui. Influence of Thermal Exposure at 700oC on the Microstructure and Morphology in the Surface of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2022, 58(8): 1003-1012.
[3] CHEN Yuyong, YE Yuan, SUN Jianfei. Present Status for Rolling TiAl Alloy Sheet[J]. 金属学报, 2022, 58(8): 965-978.
[4] LI Tianrui, LIU Guohuai, YU Shaoxia, WANG Wenjuan, ZHANG Fengyi, PENG Quanyi, WANG Zhaodong. Microstructure Evolution and Deformation Mechanisms by Direct Hot-Pack Rolling for As-Cast Ti-46Al-8Nb Alloys[J]. 金属学报, 2020, 56(8): 1091-1102.
[5] LIU Xianfeng, LIU Dong, LIU Renci, CUI Yuyou, YANG Rui. Microstructure and Tensile Properties of Ti-43.5Al-4Nb-1Mo-0.1B Alloy Processed by Hot Canned Extrusion[J]. 金属学报, 2020, 56(7): 979-987.
[6] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[7] Zhanxing CHEN,Hongsheng DING,Ruirun CHEN,Jingjie GUO,Hengzhi FU. Microstructural Evolution and Mechanism of Solidified TiAl Alloy Applied Electric Current Pulse[J]. 金属学报, 2019, 55(5): 611-618.
[8] Yimin LIAO, Min FENG, Minghui CHEN, Zhe GENG, Yang LIU, Fuhui WANG, Shenglong ZHU. Comparative Study of Hot Corrosion Behavior of theEnamel Based Composite Coatings and the ArcIon Plating NiCrAlY on TiAl Alloy[J]. 金属学报, 2019, 55(2): 229-237.
[9] JIN Hao, JIA Qing, LIU Ronghua, XIAN Quangang, CUI Yuyou, XU Dongsheng, YANG Rui. Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy[J]. 金属学报, 2019, 55(12): 1519-1526.
[10] HUANG Taiwen,LU Jing,XU Yao,WANG Dong,ZHANG Jian,ZHANG Jiachen,ZHANG Jun,LIU Lin. Effects of Rhenium and Tantalum on Microstructural Stability of Hot-Corrosion Resistant Single Crystal Superalloys Aged at 900 ℃[J]. 金属学报, 2019, 55(11): 1427-1436.
[11] Yu PAN, Xin LU, Chengcheng LIU, Jianzhuo SUN, Jianbo TONG, Wei XU, Xuanhui QU. Effect of Sn Addition on Densification and Mechanical Properties of Sintered TiAl Base Alloys[J]. 金属学报, 2018, 54(1): 93-99.
[12] Tianrui LI, Guohuai LIU, Mang XU, Hongzhi NIU, Tianliang FU, Zhaodong WANG, Guodong WANG. Microstructures and High Temperature Tensile Properties of Ti-43Al-4Nb-1.5Mo Alloy in the Canned Forging andHeat Treatment Process[J]. 金属学报, 2017, 53(9): 1055-1064.
[13] Zhanxing CHEN,Hongsheng DING,Shiqiu LIU,Ruirun CHEN,Jingjie GUO,Hengzhi FU. Effects of Direct Current on Microstructure and Properties of Ti-48Al-2Cr-2Nb Alloy[J]. 金属学报, 2017, 53(5): 583-591.
[14] Jin WANG, Yuefei ZHANG, Jinyao MA, Jixue LI, Ze ZHANG. Microcrack Nucleation and Propagation Investigation ofInconel 740H Alloy Under In SituHigh Temperature Tensile Test[J]. 金属学报, 2017, 53(12): 1627-1635.
[15] Gang WANG,Lei XU,Yuyou CUI,Rui YANG. DENSIFICATION MECHANISM OF TiAl PRE-ALLOY POWDERS CONSOLIDATED BY HOT ISOSTATIC PRESSING AND EFFECTS OF HEAT TREATMENTON THE MICROSTRUCTURE OF TiAl POWDER COMPACTS[J]. 金属学报, 2016, 52(9): 1079-1088.
No Suggested Reading articles found!