Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (12): 1485-1490    DOI: 10.11900/0412.1961.2014.00241
Current Issue | Archive | Adv Search |
INFLUENCE OF TEMPERATURE ON LOW-CYCLE FATIGUE BEHAVIOR OF INCONEL 625 NICKEL-BASED SUPERALLOY WELDING JOINT
WANG Yuanyuansup1, CHEN Lijia1(), WANG Baosen2
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870
2 Institute for Welding and Surface Technology of R&D Center, Baoshan Iron & Steel Co. LTD Research Institute, Shanghai 201900
Cite this article: 

WANG Yuanyuan, CHEN Lijia, WANG Baosen. INFLUENCE OF TEMPERATURE ON LOW-CYCLE FATIGUE BEHAVIOR OF INCONEL 625 NICKEL-BASED SUPERALLOY WELDING JOINT. Acta Metall Sin, 2014, 50(12): 1485-1490.

Download:  HTML  PDF(3876KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The low-cycle fatigue tests of Inconel 625 nickel-based superalloy welding joints at 25 and 760 ℃ were performed . The strain-fatigue life data and cyclic stress-strain data were analyzed to determine the strain fatigue parameters of Inconel 625 superalloy welding joints. The result showed that the relationship between elastic strain amplitude, plastic strain amplitude and reversals to failure could be described by Basquin and Coffin-Manson equations, respectively. Under the strain control, the continuous cyclic softening was observed at 25 ℃, however, the cyclic hardening appeared at 760 ℃. At 25 ℃, the fatigue crack of Inconel 625 superalloy welding joints initiated transgranularly at the specimen surface and propagated in the transgranular mode. Differently, at 760 ℃, the fatigue crack initiated transgranularly at the specimen surface, but propagated in mixed transgranular and intergranular modes.

Key words:  Inconel 625 nickel-based superalloy      welding joint      low-cycle fatigue      dislocation      twin boundary     
ZTFLH:  TG146  

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00241     OR     https://www.ams.org.cn/EN/Y2014/V50/I12/1485

Fig.1  Cyclic stress response curves of Inconel 625 alloy welding joint under different strain amplitudes at 25 ℃ (a) and 760 ℃ (b)
Fig.2  Total stain amplitude versus fatigue life curves of Inconel 625 alloy welding joint at different temperatures
Fig.3  Plastic (a) and elastic (b) strain amplitudes versus reversals to failure curves for Inconel 625 alloy welding joint at 25 and 760 ℃
Temperature / ℃ ε f / % c σ f / MPa b K' / MPa n'
25 105.2 -0.699 1891.1 -1.148 8124.6 0.487
760 505.6 -0.105 1332.6 -0.143 972.6 0.106
Table 1  Strain fatigue parameters of Inconel 625 alloy welding joint at different temperatures
Fig.4  Cyclic stress-strain curves for Inconel 625 welding joint
Fig.5  Micrographs of fatigue fracture surfaces at 25 ℃ for Inconel 625 alloy welding joint (The arrow indicates the surface of specimen )
Fig.6  Micrographs of fatigue fracture surfaces at 760 ℃ for Inconel 625 alloy welding joint (The arrows indicate the surfaces; Det/2—total strain amplitude)
Fig.7  Microstructures of Inconel 625 alloy welding joint after low-cycle fatigue deformation under strain amplitudes of 0.4% (a) and 1.0% (b) at 25 ℃ (The inset in Fig.7a shows the corresponding SAED pattern)
Fig.8  Microstructures of Inconel 625 alloy welding joint after low-cycle fatigue deformation under strain amplitudes of 0.25% (a) and 0.4% (b) at 760 ℃ (The inset in Fig.8b shows the corresponding SAED pattern)
[1] Yan S C, Cheng M, Zhang S H, Zhang H Y, Zhang W H, Zhang L W. Chin J Mater Res, 2010; 24: 239
(闫士彩, 程 明, 张士宏, 张海燕, 张伟红, 张立文. 材料研究学报, 2010; 24: 239)
[2] Mathew M, Parameswaran P. Mater Charact, 2008; 59: 5
[3] Thomas C,Tait P. Int J Pressure Vessels Piping, 1994; 59: 1
[4] Wang H Y, An Y Q, Li C Y, Chao B, Ni Y, Liu G B, Li P. Mater Rev, 2011; 25: 482
(王会阳, 安云岐, 李承宇, 晁 兵, 倪 雅, 刘国彬, 李 萍. 材料导报, 2011; 25: 482)
[5] Zhang B, Xiao D M. Mech Res Appl, 2011; (3): 19
(张 彬, 肖德明. 机械研究与应用, 2011; (3): 19)
[6] Guo Y, Hou S F, Zhou R C. J Chin Soc Power Eng, 2010; 30: 966
(郭 岩, 侯淑芳, 周荣灿. 动力工程学报, 2010; 30: 966)
[7] Li W Y, Liu H F, Wang T, Zhao S Q. Mater Mech Eng, 2008; 32(7): 46
(李维银, 刘红飞, 王 婷, 赵双群. 机械工程材料, 2008; 32(7): 46)
[8] Huang Z W, Yuan F H, Wang Z G, Zhu S J, Wang F G. Acta Metall Sin, 2007; 43: 678
(黄志伟, 袁福河, 王中光, 朱世杰, 王富岗. 金属学报, 2007; 43: 678)
[9] Chen L J, Wu W, Liaw P K. Acta Metall Sin, 2006; 42: 952
(陈立佳, 吴 崴, Liaw P K. 金属学报, 2006; 42: 952)
[10] Chen L J, Wang Z G, Yao G, Tian J F. Acta Metall Sin, 1999; 35:1144
(陈立佳, 王中光, 姚 戈, 田继丰. 金属学报, 1999; 35: 1144)
[11] Lord D C, Coffin L F. Metall Trans, 1973; 4: 1647
[12] Antolovich S D, Liu S, Baur R. Metall Trans, 1981; 12A: 473
[13] Reuchet J, Remy L. Mater Sci Eng, 1983; A58: 19
[14] Rao K B S, Schiffers H, Schuster H, Nickel H. Metall Trans, 1988; 19A: 359
[15] Valsan M, Shastry D H, Rao K B, Mannan S L. Metall Trans, 1994; 25A: 159
[16] Li S X, Smith D J. Fatigue Fract Eng Mater Struct, 1995; 18: 631
[17] Hwang S K, Lee H N, Yoon B H. Metall Trans, 1989; 20: 2793
[18] Liu Y, Chen L J, Wang Z G. Acta Metall Sin, 1999; 35: 955
(刘 毅, 陈立佳, 王中光. 金属学报, 1999; 35: 955)
[19] Hwang S K, Lee H N, Yoon B H. Metall Trans, 1989; 20: 2793
[20] Worithem D W, Robertson I M, Leckie F A, Socie D F, Altstetter C J. Metall Trans, 1990; 21: 3215
[21] Leverant G R, Kear B H. Metall Trans, 1970; 1: 491
[22] Kim T K, Yu Y, Jeon T Y. Metall Trans, 1992; 23: 2581
[23] Link T, Feller-Kniepmeier M. Metall Trans, 1992; 23: 99
[24] Carry C S, Strudel J L. Acta Metall, 1977; 25: 767
[25] Carry C S, Strudel J L. Acta Metall, 1978; 26: 859
[26] Portella P D, Bertram A, Fahlbusch E, Frenz H, Kinder J. In: Lutjering G, Mowalk H eds., Proceedings of the Sixth International Fatigue Congress, 1996: 795
[27] Henderson P J, Lindblom J. Scr Mater, 1997; 37: 491
[28] Zhang J H, Hu Z Q, Xu Y B, Wang Z G. Metall Trans, 1992; 23: 1253
[29] Monier C, Bertrand J P, Trichet M F, Cornet M. Mater Sci Eng, 1994; A188: 133
[30] Mason S S. Exp Mech, 1965; 5: 193
[1] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[2] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[4] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[5] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[6] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[7] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[8] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[9] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[10] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[11] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[12] ZHOU Hongwei, BAI Fengmei, YANG Lei, CHEN Yan, FANG Junfei, ZHANG Liqiang, YI Hailong, HE Yizhu. Low-Cycle Fatigue Behavior of 1100 MPa Grade High-Strength Steel[J]. 金属学报, 2020, 56(7): 937-948.
[13] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[14] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[15] ZHANG Zhefeng,SHAO Chenwei,WANG Bin,YANG Haokun,DONG Fuyuan,LIU Rui,ZHANG Zhenjun,ZHANG Peng. Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels[J]. 金属学报, 2020, 56(4): 476-486.
No Suggested Reading articles found!