Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (12): 1508-1520    DOI: 10.1016/j.jmst.2013.07.001
Current Issue | Archive | Adv Search |
SIMULATION AND EXPERIMENTAL STUDIES ON GRAIN SELECTION BEHAVIOR OF SINGLE CRYSTAL SUPERALLOY :I. Starter Block
ZHANG Hang1), XU Qingyan1), SUN Changbo2), QI Xiang1),TANG Ning1), LIU Baicheng 1)
1) Key Laboratory for Advanced Materials Processing Technology, Ministry of Education,School of Materials Science and Engineering, Tsinghua University, Beijing 100084
2) Shenyang Liming Aero—Engine Group Corporation Ltd., Shenyang 110043
Cite this article: 

ZHANG Hang, XU Qingyan, SUN Changbo, QI Xiang,TANG Ning, LIU Baicheng. SIMULATION AND EXPERIMENTAL STUDIES ON GRAIN SELECTION BEHAVIOR OF SINGLE CRYSTAL SUPERALLOY :I. Starter Block. Acta Metall Sin, 2013, 49(12): 1508-1520.

Download:  PDF(7938KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The rapid development of advanced aero—engine and industry gas turbine requires high performance of single crystal (SX) blade. Spiral selector is very important to produce SX blade, which includes starter block and spiral part. In this research, grain density changing and orientation deviating as the height of grain growth (the distance between section studied and the undersurface of the sample) increasing were studied by the experiment and simulation, and the designing rules for the starter block were given out. EBSD orientation mapping technology was used to get grains' morphology and orientation. Mathematical and physical models were built for the directional solidification process. Adopting CA—FD method, the 3D macro temperature field of solidification process was calculated as well as grain growth. The properties of grains competitive growth and evolution process during directional solidification in starter block were analyzed based on macro and micro modeling results, and rules for grains competitive growth was explained, which provided theoretical supports for designing starter block.

Key words:  spiral grain selector      starter block      numerical simulation      grain orientation      grain density     
Received:  25 April 2013     

URL: 

https://www.ams.org.cn/EN/10.1016/j.jmst.2013.07.001     OR     https://www.ams.org.cn/EN/Y2013/V49/I12/1508

[1] Reed R C.  The Superalloys Fundamentals and Applications. UK: Cambridge University Press, 2006: 121

[2] Shi C X, Zhong Z Y.  Acta Metall Sin, 2010; 46: 1281
(师昌绪, 仲增墉. 金属学报, 2010; 46: 1281)
[3] Fu H Z, Guo J J, Liu L, Li J S.  Directional Solidification and Processing of Advanced Materials. Beijing: Science Press, 2008: 525
(傅恒志, 郭景杰, 刘林, 李金山. 先进材料定向凝固. 北京: 科学出版社, 2008: 525)
[4] Li J R, Xiong J C, Tang D Z.  Advanced High Temperature Structural Materials and Technology. Beijing: National Defense Industry Press, 2012: 100
(李嘉荣, 熊继春, 唐定中. 先进材料高温结构材料与技术. 北京: 国防工业出版社, 2012: 100)
[5] Gandin C A, Rappaz M.Acta Metall Mater, 1994; 42: 2233
[6] Rappaz M, Gandin C A.Acta Metall Mater, 1993; 41: 345
[7] Yang X L, Lee P D, D'Souza N.  JOM, 2005; 57(5): 40
[8] Gandin C A, Rappaz M.Acta Mater, 1997; 45: 2187
[9] Jin H, Li J, Pan D.Acta Metall Sin (Engl Lett), 2009; 22: 429
[10] Pan D, Xu Q Y, Liu B C.  Sci China (Engl Lett), 2011; 54G: 851
[11] Zhang H, Xu Q Y, Tang N, Pan D, Liu B C.  Sci China (Engl Lett), 2011; 54E: 3191
[12] Liu W W.  Rare Met, 2011; 30: 396
[13] Yang X L, Ness D, Lee P D, D'Souza N.  Mater Sci Eng, 2005; A413: 571
[14] D'Souza N, Ardakani M G, McLean M, Shollock B A.  Metall Mater Trans, 2000; 31A: 2877
[15] Carter P, Cox D C, Gandin C A, Reed R C.  Mater Sci Eng, 2000; A280: 233
[16] Epishin A I, Nolze G.  Cryst Rep, 2006; 51: 710
[17] Pan D, Xu Q Y, Liu B C, Li J R, Yuan H L, Jin H P.  JOM, 2010; 62(5): 30
[18] Pan D.  PhD Dissertation, Tsinghua University, Beijing, 2010
(潘冬. 清华大学博士学位论文, 北京, 2010)
[19] Seo S M, Kim I S, Lee J H, Jo C Y, Miyahara H, Ogi K.  Met Mater Int, 2009; 15: 391
[20] Zhou Y Z, Volek A, Green N R.  Acta Mater, 2008; 56: 2631
[21] Zhou Y Z, Jin T, Sun X F.  Acta Metall Sin, 2010; 11: 1327
(周亦胄, 金涛, 孙晓峰. 金属学报, 2010; 46: 1327)
[22] Walton D, Chalmers B.  Trans Am Inst Min Metall Eng, 1959; 215: 447
[23] Jiang L, Li S, Han Y.  Proc Eng, 2012; 27: 1135
[24] Meng X, Lu Q, Li J, Jin T, Sun X, Zhang J, Chen Z, Wang Y, Hu Z.J Mater Sci Technol, 2012; 28: 214
[25] Liu Z Y, Lin M, Yu D, Zhou X W, Gu Y X, Fu H Z.  Metall Mater Trans A, DOI:10.1007/S11661—013—1840—6
[26] Yu J.  PhD Dissertation, Tsinghua University, Beijing, 2007
(于靖. 清华大学博士学位论文, 北京, 2007)
[27] Liang Z J.  PhD Dissertation, Tsinghua University, Beijing, 2003
(梁作俭. 清华大学博士学位论文, 北京, 2003)
[28] Li J R, Zhong Z G, Tang D Z, Liu S Z, Wei P, Wei P Y, Wu Z T, Huang D.In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Oison S, Schirra J J,eds.,  Superalloys 2000, Warrendale, PA: TMS, 2000: 777
[29] Editorial Committee.  Practical Handbook of Engineering Materials.
2nd Ed., Beijing: China Standards Press, 2002: 771
(丛书编委会. 工程材料实用手册. 第2版, 北京: 中国标准出版社, 2002: 771)
[30] Jin H P, Li J R, Liu S Z. In: Chandra T, Wanderka N, Reimers W, Ionescu M, eds.,6th Int Conf on Processing and Manufacturing of Advanced Materials,Berlin, Germany: Trans Tech Publications Ltd., 2010: 2251
[31] Pan D, Xu Q Y, Yu J, Liu B C, Li J R, Yuan H L, Jin H P.Int J Cast Metal Res, 2008; 21: 308
[32] Liu S Z, Li J R, Tang D Z, Zhong Z G.  J Mater Eng, 1999; (7): 40
(刘世忠, 李嘉荣, 唐定忠, 钟振纲. 材料工程, 1999; (7): 40)
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[5] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[6] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[7] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[8] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[9] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[10] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[11] Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG,Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. 金属学报, 2019, 55(8): 1058-1066.
[12] LU Shijie, WANG Hu, DAI Peiyuan, DENG Dean. Effect of Creep on Prediction Accuracy and Calculating Efficiency of Residual Stress in Post Weld Heat Treatment[J]. 金属学报, 2019, 55(12): 1581-1592.
[13] ZHANG Qingdong, LIN Xiao, LIU Jiyang, HU Shushan. Modelling of Q&P Steel Heat Treatment Process Based on Finite Element Method[J]. 金属学报, 2019, 55(12): 1569-1580.
[14] Jun LI, Mingxu XIA, Qiaodan HU, Jianguo LI. Solutions in Improving Homogeneities of Heavy Ingots[J]. 金属学报, 2018, 54(5): 773-788.
[15] Xinhua LIU, Huadong FU, Xingqun HE, Xintong FU, Yanqing JIANG, Jianxin XIE. Numerical Simulation Analysis of Continuous Casting Cladding Forming for Cu-Al Composites[J]. 金属学报, 2018, 54(3): 470-484.
No Suggested Reading articles found!