Please wait a minute...
Acta Metall Sin  2013, Vol. 29 Issue (4): 506-512    DOI: 10.3724/SP.J.1037.2012.00667
Current Issue | Archive | Adv Search |
FIRST-PRINCIPLES AND EXPERIMENTAL STUDY ON THE ELECTRONIC AND OPTICAL PROPERTIES OF Eu DOPED ZnO STRUCTURE
LI Honglin1), ZHANG Zhong1), LU Yingbo2), HUANG Jinzhao1), LIU Ruxi1)
1) School of Physics and Technology, University of Jinan, Jinan 250022
2) School of Space Science and Physics, Shandong University at Weihai, Weihai 264209
Cite this article: 

LI Honglin, ZHANG Zhong, LU Yingbo, HUANG Jinzhao, LIU Ruxi. FIRST-PRINCIPLES AND EXPERIMENTAL STUDY ON THE ELECTRONIC AND OPTICAL PROPERTIES OF Eu DOPED ZnO STRUCTURE. Acta Metall Sin, 2013, 29(4): 506-512.

Download:  PDF(1082KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Pure and Eu doped ZnO were calculated by first-principles full potential linearized augmented plane wave ultra-soft pseudo-potential method to investigate band structures, density of states (DOS) and optical properties of the structures. The results show that the conduction bands generate conductive carriers introduced by impurity atom of Eu. The electrical conductivity of the system is improved and the Fermi levels shift upward into the conduction band and show n-type conductivity. The absorption coefficient of Eu doped ZnO are higher than that of pure ZnO in low energy region. In the experiment part, pure and Eu doped ZnO powder were prepared through sintering method and the corresponding properties of the samples were investigated by XRD, SEM and photoluminescence (PL) spectra, which show that the lattice constants of ZnO become larger and crystallization turn worse after doping.

Key words:  ZnO      Eu      doping      first-principles     
Received:  07 November 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00667     OR     https://www.ams.org.cn/EN/Y2013/V29/I4/506

[1] Huang S Y, Xu S, Chai J W, Cheng Q J, Long J D, Ostrikov K.  Mater Lett, 2009; 63: 972


 


[2] Zhou H M, Yi D Q, Yu Z M, Xiao L R, Li J, Wang B.  Acta Metall Sin, 2006; 42: 505

 


(周宏明, 易丹青, 余志明, 肖来荣, 李荐, 王斌. 金属学报, 2006; 42: 505)

 


[3] Lu Y F, Ye Z Z, Zhu L P, Zeng Y J, Huang J Y, Zhao B H.  J Mater Sci Technol, 2013; 29: 154

 


[4] Huang G S, Wu X L, Cheng Y C, Shen J C, Huang A P, Chu P K.  Appl Phys, 2007; 86A: 463

 


[5] Pei G Q, Xia C T, Wu B, Wang T.  Comput Mater Sci, 2008; 43: 489

 


[6] Kaur G, Dwivedi Y, Rai S B.  J Fluoresc, 2011; 21: 423

 


[7] Peng Z J, Yang Y Y, Wang C B, Fu Z Q.  Acta Metall Sin, 2008; 10: 1265

 


(彭志坚, 杨义勇, 王成彪, 付志强. 金属学报, 2008; 10: 1265)

 


[8] Abdullah M, Panatarani C, Kim T O, Okuyam K.  J Alloys Compd, 2004; 377: 298

 


[9] Ronfard-Haret J C, Valat P, Wintgens V, Kossanyi J.  J Lumin, 2000; 91: 71

 


[10] Lang J H, Li X, Yang J H, Yang L L, Zhang Y J, Yan Y S, Han Q, Wei M B, Gao M, Liu X Y, Wang R.

 


 Appl Surf Sci, 2011; 257: 9574

 


[11] Atsushi I, Satoshi F, Hisao Y.  Opt Mater, 2011; 33: 1116

 


[12] Chen P L, Ma X Y, Yang D R.  J Alloys Compd, 2007; 431: 317

 


[13] Zhang L L, Ling Y W, Zhang L, Shi P.  Rare Met Mater Eng, 2008; 37: 370

 


(张琳丽, 凌亚文, 张玲, 史彭. 稀有金属材料与工程, 2008; 37: 370)

 


[14] Xin X S, Zhou B B, Lu S C, Su W H.  Acta Phys Sin, 2005; 54: 1859

 


(辛显双, 周百斌, 吕树臣, 苏文辉. 物理学报, 2005; 54: 1859)

 


[15] Bagnall D M, Chen Y F, Zhu Z, Yao T, Shen M Y, Goto T.  Appl Phys Lett, 1998; 73: 1038

 


[16] Deng S H, Duan M Y, Xu M, He L.  Physica, 2011; 406B: 2314

 


[17] Hong G Y.  Rare Earth Luminescent Materials-Basic and Applied. Beijing: Science Press, 2011: 50

 


(洪广言. 稀土发光材料-基础与应用. 北京: 科学出版社, 2011: 50)

 


[18] Zhang F C, Zhang Z Y, Zhang W H.  Acta Opt Sin, 2009; 29: 1025

 


[19] Burstein E.  Phys Rev, 1954; 93: 632

 


[20] Shen X C.  Semiconductor Optical Properties. Beijing: Science Press, 1992: 24

 


(沈学础. 半导体光学性质. 北京: 科学出版社, 1992: 24)

 


[21] Yang L L, Zhao Q X, Willander M, Ivanov I G.  J Appl Phys, 2009; 105: 053503

 


[22] Wang Y G, Lau S P, Lee H W, Yu S F, Tay B K, Zhang X H, Hng H H.  J Appl Phys, 2003; 94: 354

 


[23] Wu C L, Qiao X L, Luo L L, Li H J.  Mater Res Bull, 2008; 43: 1883

 


[24] Alvi N H, Ali S M U, Hussain S, Nur O, Willander M.  Scr Mater, 2011; 64: 697

 


[25] Yang J H, Wang R, Yang L L, Lang J U, Wei M B.  J Alloys Compd, 2011; 509: 3606

 


[26] Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T, Ye Z Z, Zeng Y J, Zhang Y Z, Zhu L

 


P, He H P, Zhao B H.  J Appl Phys, 2007; 101: 083705

 


[27] Chaitanya D P, Thomas A, Ruairi H, Stefano S.  J Magn Magn Mater, 2007; 316: e185

 


[28] Zhao J L, Li X M, Bian J M, Yu W D, Zhang C Y.  J Cryst Growth, 2005; 208: 495
[1] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[2] WANG Furong, ZHANG Yongmei, BAI Guoning, GUO Qingwei, ZHAO Yuhong. First Principles Calculation of Al-Doped Mg/Mg2Sn Alloy Interface[J]. 金属学报, 2023, 59(6): 812-820.
[3] JI Xiumei, HOU Meiling, WANG Long, LIU Jie, GAO Kewei. Modeling and Application of Deformation Resistance Model for Medium and Heavy Plate Based on Machine Learning[J]. 金属学报, 2023, 59(3): 435-446.
[4] MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. 金属学报, 2023, 59(2): 267-276.
[5] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[6] ZHANG Lili, JI Zongwei, ZHAO Jiuzhou, HE Jie, JIANG Hongxiang. Key Factors Influencing Eutectic Si Modification in Al-Si Hypoeutectic Alloy by Trace La[J]. 金属学报, 2023, 59(11): 1541-1546.
[7] FENG Di, ZHU Tian, ZANG Qianhao, LEE Yunsoo, FAN Xi, ZHANG Hao. Solution Behavior of Spray-Formed Hypereutectic AlSiCuMg Alloy[J]. 金属学报, 2022, 58(9): 1129-1140.
[8] LIU Xuxi, LIU Wenbo, LI Boyan, HE Xinfu, YANG Zhaoxi, YUN Di. Calculation of Critical Nucleus Size and Minimum Energy Path of Cu-Riched Precipitates During Radiation in Fe-Cu Alloy Using String Method[J]. 金属学报, 2022, 58(7): 943-955.
[9] GAO Yubi, DING Yutian, LI Haifeng, DONG Hongbiao, ZHANG Ruiyao, LI Jun, LUO Quanshun. Effect of Deformation Rate on the Elastic-Plastic Deformation Behavior of GH3625 Alloy[J]. 金属学报, 2022, 58(5): 695-708.
[10] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[11] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[12] MAO Fei, LU Hao, TANG Fawei, GUO Kai, LIU Dong, SONG Xiaoyan. First-Principle Calculation on the Effect of Mn and In on the Structural Stability and Magnetic Moment of SmCo7 Alloys[J]. 金属学报, 2021, 57(7): 948-958.
[13] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[14] MA Dexin, ZHAO Yunxing, XU Weitai, PI Libo, LI Zhongxing. Surface Effect on Eutectic Structure Distribution in Single Crystal Superalloy Castings[J]. 金属学报, 2021, 57(12): 1539-1548.
[15] ZHANG Shaohua, XIE Guang, DONG Jiasheng, LOU Langhong. Investigation on Eutectic Dissolution Behavior of Single Crystal Superalloy by Differential Scanning Calorimetry[J]. 金属学报, 2021, 57(12): 1559-1566.
No Suggested Reading articles found!