Please wait a minute...
Acta Metall Sin  2013, Vol. 29 Issue (4): 501-505    DOI:
Current Issue | Archive | Adv Search |
FIRST-PRINCIPLES INVESTIGATION OF THE THERMODYNAMICS PROPERTIES OF Al3Sc AND Al3Zr INTERMETALLICS
ZHANG Xudong1,2), WANG Shaoqing1)
1) Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences,Shenyang 110016
2) School of Science, Shenyang University of Technology, Shenyang 110870
Cite this article: 

ZHANG Xudong, WANG Shaoqing. FIRST-PRINCIPLES INVESTIGATION OF THE THERMODYNAMICS PROPERTIES OF Al3Sc AND Al3Zr INTERMETALLICS. Acta Metall Sin, 2013, 29(4): 501-505.

Download:  PDF(444KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A first-principles investigation of the structural and thermodynamic properties of Al3Sc and Al3Zr intermetallics has been conducted using the norm--conserving pseudopotentials within the local density approximation in the frame of the density functional theory (DFT) and the density functional perturbation theory (DFPT) with the ABINIT code. The calculated formation enthalpy and cohesive energy results show that both phases have strong alloying ability and Al3Zr has a higher structural stability than Al3Sc phase. By means of calculations, the relationships of the vibrational free energy constant-volume specific heats entropy bulk modulus and thermal expansion with the elevated temperatures are given. The calculated bulk modulus indicates that Al3Sc and Al3Zr phases can improve the high-temperature creep resistance properties of aluminum alloys. The calculated datum of the thermal expansion and the diffusion speed of Sc and Zr in Al can explain the mechanismthat the solder wire with Sc and Zr can improve the strength of welding gap and the resistance ability of hot crack.

Key words:  aluminum alloy      first-principles calculation      structural property      thermodynamic property     
Received:  05 November 2012     

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2013/V29/I4/501

[1] Kim W J, Kim J K, Kim H K. J Alloys Compd, 2008; 450: 222


[2] Watanabe C, Monzen R, Tazaki K.Int J Fatigue, 2008; 30: 635

[3] Lee W S, Chen T H, Gong Q J.J Mater Trans, 2007; 48: 500

[4] Pan Q L, Yin Z M, Zou J X, Chen X F, Zhang C F.Acta Metall Sin, 2001; 37: 749

(潘青林, 尹志民, 邹景霞, 陈显福, 张传福. 金属学报, 2001; 37: 749)

[5] Norman A F, Prangnell P B.Acta Mater, 1998; 46: 5715

[6] Venkateswarlu K, Pathak L C.Mater Sci Eng, 2004; A383: 374

[7] Yin Z M, Pan Q L, Zhang Y H,Jiang F.Mater Sci Eng, 2000; A280: 151

[8] Song M, He Y H, Fang S F.J Mater Eng Perf, 2011; 20: 377

[9] Schuster J C, Bauer J.J Less-Common Met, 1985; 109: 345

[10] Desh P B, Schwarz R B, Nash P.J Less-Common Met, 1991; 168: 69

[11] Goedecker S, Teter M.Phys Rev, 1996; 54B: 1703

[12] Monkhorst H J, Pack J D.Phys Rev, 1976; 13B: 5188

[13] Gonze X, Lee C.Phys Rev, 1997; 55B: 10355

[14] Baroni S, Gironcoli S, Corso A D, Giannozzi P.Rev Mod Phys, 2001; 73: 515

[15] Vinet P, Rose J, Ferrante J, Smith J.J Phys Condens Matter, 1989; 1: 1941

[16] Quong A A, Liu A Y.Phys Rev, 1997; 56B: 7767

[17] Zhang H, Wang S Q.J Mater Res, 2012; 27: 1631

[18] Wyckoff R W G.Crystal Structures. 2nd Ed., New York: Interscience Ltd, 1963: 20

[19] Ehrenreich H, Seitz F, Turnbull D.Solid State Physics. 1st Ed., New York: Academic New York, 1964: 276

[20] Wang R N, Zeng M X.J Mater Sci, 2012; 47: 3793

[21] Fukunaga K, Shouji T, Miura Y.Mater Sci Eng, 1997; A239--240: 202

[22] Wang N, Tang B Y.Acta Phys Sin, 2009; 58: 230

(王娜, 唐壁玉. 物理学报, 2009; 58: 230)

[23] Mao Z, Chen W, Seidman D N, Wolverton C.Acta Mater, 2011; 59: 3012

[24] Wolverton C, Ozolins V.Phys Rev, 2006; 73B: 144104

[25] Lee C, Gonze X.Phys Rev, 1995; 51B: 8610

[26] Wallace D C.Thermodynamics of Crystals. New York: Dover Ltd, 1972: 586

[27] Ozolins V, Asta M.Phys Rev Lett, 2001; 86: 448

[28] Clouet E, Sanchez J M.Phys Rev, 2002; 65B: 094105

[29] Knipling K E, Seidman D N, Dunand D C.Acta Mater, 2011; 59: 943

[30] Wang S, Li Z, Yin Z M.Ordnance Mater Sci Eng, 2005; 28(3): 26

(王生, 李周, 尹志民. 兵器材料科学与工程, 2005; 28(3): 26)

[31] Li H, Gao Z, Yin H, Jiang H, Su X.Scr Mater, 2013; 68: 59.

[32] Mao Z, Seidman D N, Wolverton C.Acta Mater, 2011; 59: 3659

[33] Booth-Morrison C, Mao Z, Diaz M, Dunand D C, Wolver C.Acta Mater, 2012; 60: 4740

[34] Miura Y, Joh C H, Katsube T.Mater Sci Forum, 2000; 331--337: 1031

[35] Dai X Y, Xia C Q, Peng X M.Chin J Nonferrous Met, 2010; 20: 451

[36] Clouet E, Lae L, Epicier T, Lefebvre W, Nastar M, Deschamps A.Nat Mater, 2006; 5: 482
[1] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[2] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[3] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[4] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[5] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[6] WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. 金属学报, 2022, 58(7): 921-931.
[7] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[8] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[9] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
[10] HUANGFU Hao, WANG Zilong, LIU Yongli, MENG Fanshun, SONG Jiupeng, QI Yang. A First Principles Investigation of W1 - x Ir x Alloys: Structural, Electronic, Mechanical, and Thermal Properties[J]. 金属学报, 2022, 58(2): 231-240.
[11] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[12] WANG Guanjie, LI Kaiqi, PENG Liyu, ZHANG Yiming, ZHOU Jian, SUN Zhimei. High-Throughput Automatic Integrated Material Calculations and Data Management Intelligent Platform and the Application in Novel Alloys[J]. 金属学报, 2022, 58(1): 75-88.
[13] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[14] ZHAO Wanchen, ZHENG Chen, XIAO Bin, LIU Xing, LIU Lu, YU Tongxin, LIU Yanjie, DONG Ziqiang, LIU Yi, ZHOU Ce, WU Hongsheng, LU Baokun. Composition Refinement of 6061 Aluminum Alloy Using Active Machine Learning Model Based on Bayesian Optimization Sampling[J]. 金属学报, 2021, 57(6): 797-810.
[15] SUN Jiaxiao, YANG Ke, WANG Qiuyu, JI Shanlin, BAO Yefeng, PAN Jie. Microstructure and Mechanical Properties of 5356 Aluminum Alloy Fabricated by TIG Arc Additive Manufacturing[J]. 金属学报, 2021, 57(5): 665-674.
No Suggested Reading articles found!