Please wait a minute...
Acta Metall Sin  2013, Vol. 29 Issue (4): 495-500    DOI:
Current Issue | Archive | Adv Search |
EFFECTS OF THE ADDITION OF Ti OR Al ON THE WETTING BEHAVIORS AND INTERFACIALCHARACTERISTICS OF Zr50Cu50 BULK METALLIC GLASS/W SUBSTRATE
MA Guofeng1), HE Chunlin1), LI Zhengkun2), ZHANG Bo2), LI Hong2), ZHANG Haifeng2), HU Zhuangqi2)
1)Institute of Surface Engineering, Key Lab of Advance Materials Technology of Educational Department Liaoning Province, Shenyang University, Shenyang 110044
2)Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

MA Guofeng, HE Chunlin, LI Zhengkun, ZHANG Bo, LI Hong, ZHANG Haifeng, HU Zhuangqi. EFFECTS OF THE ADDITION OF Ti OR Al ON THE WETTING BEHAVIORS AND INTERFACIALCHARACTERISTICS OF Zr50Cu50 BULK METALLIC GLASS/W SUBSTRATE. Acta Metall Sin, 2013, 29(4): 495-500.

Download:  PDF(1869KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to get the good performance of metal W reinforced Zr-based bulk metallicglass (BMG) matrix composites, it is necessary to understand the effects of alloy elements on the wettability between Zr-based BMG and W substrate. In this work, the effects of the addition of Ti or Al on the wetting behaviors and interfacial characteristics of Zr50Cu50 BMG on W substrate were studied at different temperatures in a high vacuum by using a sessile drop technique. The SEM and XRD were used to analyze the microstructure and bonding mechanism of the Zr50Cu50 BMG / W interface with the addition of Ti or Al element. The results show that the wetting angle of Zr50Cu50 molten alloy on W substrate decreases with increasing content of Ti or Al in liquid Zr50Cu50 and experimental temperature. The wettability of Zr50Cu50 BMG on W substrates is improved because the surface tension of Zr50Cu50 molten alloy decreases with increasing content of Ti or Al. It is found that the behavior between Zr50Cu50 BMG and W substrate is reactive wetting in nature, and there exists a new ZrW2 phase precipitated in the vicinity of the Zr50Cu50 BMG /W interface. The addition of Ti or Al element has different effects on the microstructure and bonding mechanism of Zr50Cu50 BMG /W interface. On the one hand, the addition of Al element promotes the interfacial reaction. With increasing content of Al, continuous reaction layers of ZrW2 phase in the interface reduce, and there are massive precipitates of Al--rich and Cu--poor phases in molten Zr50Cu50 alloy. On the other hand, the addition of Ti element restrains the interfacial reaction which gradually disappears with increasing content of Ti.

Key words:  Zr50Cu50 bulk metallic glass (BMG)      W substrate      Al      Ti      wettability     
Received:  27 October 2012     

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2013/V29/I4/495

[1] Conner R D, Johnson R B, Scruggs V. Int J Impact Eng, 2000; 24: 435


[2] Chroers J, Samwer K, Szuecs F. J Mater Res, 2000; 15: 1617

[3] Qiao D C, Zhang H F, Li H, Hu Z Q.  Acta Metall Sin, 2003; 10: 1076

(乔冬春, 张海峰, 李宏, 胡壮麒. 金属学报, 2003; 10: 1076)

[4] Liu N, Zhang H F, Hu Z Q. J Alloys Compd, 2010; 494: 347

[5] Liu N, Ma G F, Zhang H F, Hu Z Q. Mater Lett, 2008; 62: 3195

[6] Shen P, Zhang D, Zheng X H, Lin Q L, Jiang Q C.  Mater Chem Phys, 2009; 115: 322

[7] Pauly S, Das J, Mattern N, Kim D H, Eckert J.  Intermetallics, 2009; 17: 453

[8] Xue X M, Wang J T, Sui Z T. J Mater Sci, 1993; 28: 1317

[9] Saiz E, Hwang C W, Suganuma K, Tomsia A P.  Acta Mater, 2003; 51: 3185

[10] Wang X H, Conrad H.  Metall Mater Trans, 1995; 26A: 459

[11] Hui X D, Yu J L, Wang M L, Dong W, Chen G L.  Intermetallics, 2006; 14: 931

[12] Bondi A.  Chem Rev, 1953; 52: 417

[13] Li J.  J Mater Sci, 1992; 11: 1551

[14] Voue M, De Coninck J.  Acta Mater, 2000; 48: 4405

[15] Massalski T B.  Binary Alloy Phase Diagrams. 1st Ed, New York: ASM International, 1990: 2923

[16] Takeuchi A, Inoue A.  Mater Trans-JIM, 2000; 41: 1372

[1] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[6] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[7] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[8] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[9] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[10] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[11] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[12] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[13] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[14] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[15] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
No Suggested Reading articles found!