|
|
STUDY ON CRACKS IN LASER DIRECT–CLADDED TITANIUM LAYER ON LOW CARBON STEEL |
XU Hengdong 1, ZHAO Haiyan1,S¨orn Ocylok2, Igor Kelbassa2 |
1.Department of Mechanical Engineering, Tsinghua University, Beijing 100084
2.Fraunhofer Institute of Laser Technology, Aachen, Germany, 52074 |
|
Cite this article:
XU Hengdong ZHAO Haiyan S¨orn Ocylok Igor Kelbassa. STUDY ON CRACKS IN LASER DIRECT–CLADDED TITANIUM LAYER ON LOW CARBON STEEL. Acta Metall Sin, 2012, 48(2): 142-147.
|
Abstract By adjusting laser power and nozzle speed in laser cladding technology, crack–free titanium layer with even thickness and titanium mass percentage over 99%, was obtained on the substrate of low carbon steel without any intermediate layer when heat input was between 12—20 J/mm. The temperature field and the mechanical strain were simulated. Together with phase diagram and EDS, it was found that an interface zone, consisted of TiFe, (TiFe+β–Ti) eutectic compound and α–Ti, was formed between the titanium layer and the substrate. The interface zone is brittle and cracks occur in it. In titanium layer crack also occur if the mechanical strain exceeds the critical plasticity of metal. By reducing heat input, the mechanical strain decreases, thus a crack–free titanium layer with even thickness can be obtained.
|
Received: 20 September 2011
|
Fund: Supported by National Natural Science Foundation of China (Nos.50505019, 50935008 and 50975268), New Century Excellent Talents in University (No. NCET–07–0503) and Zhejiang Provincial Scientific Research Project (No.2009C21019) |
[1] Draugelates U, Bouaifi B, Wesling V. Mater Corros, 1992; 43: 166[2] Draugelates U, Bouaifi B, Steinberg H. Mater Corros, 1993; 44: 269[3] Steinberg H. PhD Thesis, Technology University of Clausthal, Clausthal, 1996[4] Chen Z K, Liu M, Zeng D C, Ma W Y. Laser J, 2009; 30: 55(陈志坤, 刘敏, 曾德长, 马文有. 激光杂志, 2009; 30: 55)[5] Chen H, Pan C X, Pan L, Tao X L. Heat Treat Met, 2002; 27: 5(陈浩, 潘春旭, 潘邻, 陶锡麒. 金属热处理, 2002; 27: 5)[6] Ghosh M, Chatterjee S. Mater Sci Eng, 2003; A358: 152[7] Kato H, Abe S, Tomizawa T. J Mater Sci, 1997; 32: 5225[8] Aleman B, Guitterrez I, Urcola J J. Mater Sci Technol, 1993; 36: 509[9] Ghosh M, Kundu S, Chatterjee S, Mishra B. Mater Trans, 2005; 36A: 1891[10] Kundu S, Chatterjee S. Mater Sci Eng, 2006; A425: 107[11] Changqing A, Zangpeng J. J Less Common Mater, 1990; 162: 315[12] Kundu S, Ghosh M, Laik A, Bhammurthy K, Kale G B, Chatterjee S. Mater Sci Eng, 2005; A407: 154[13] Kamat G R. Weld J, 1988; 67: 44[14] Tang R Z, Tian R Z. Binary Alloy Phase Diagram and Crystal Structure of Intermediate Phase. Changsha: Center South University Press, 2009: 551(唐仁政, 田荣璋 编. 二元合金相图及中间相晶体结构. 长沙: 中南大学出版社,2009: 551)[15] Li W, Zhang R L. J Changchun Univ, 1999; 9: 12(李文, 张瑞林, 长春大学学报, 1999; 9: 12)[16] Jiang S Y, Li S C. Rare Met Mater Eng, 2011; 40: 36(蒋淑英, 李世春, 稀有金属材料与工程, 2011; 40: 36)[17] Practical Handbook of Engineering Materials Editorial Board. Practical Handbook of Engineering Materials. 2nd Ed., Beijing: Standards Press of China, 2002: 8(工程材料实用手册编委会. 工程材料实用手册(第2版). 北京: 中国标准出版社, 2002: 8)[18] Shi C X, Li H D, Zhou L. Handbook of Materials Science and Engineering. Beijing: Chemical Industry Press, 2004: 1(师昌绪, 李恒德, 周廉. 材料科学与工程手册. 北京: 化学工业出版社, 2004: 1)[19] Zhu X K, Chao Y J. Comput Struct, 2002; 80: 967[20] Zhou Z F, Zhang W Y. Welding Metallurgy and Metal Welding Characteristics. 2nd Ed., Beijing: Mechanical Industry Press, 1988: 196(周振丰, 张文钺 合编, 焊接冶金与金属焊接性(第2版). 北京: 机械工业出版社, 1988: 196) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|