Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (2): 142-147    DOI: 10.3724/SP.J.1037.2011.00591
论文 Current Issue | Archive | Adv Search |
STUDY ON CRACKS IN LASER DIRECT–CLADDED TITANIUM LAYER ON LOW CARBON STEEL
XU Hengdong 1, ZHAO Haiyan1,S¨orn Ocylok2, Igor Kelbassa2
1.Department of Mechanical Engineering, Tsinghua University, Beijing 100084
2.Fraunhofer Institute of Laser Technology, Aachen, Germany, 52074
Cite this article: 

XU Hengdong ZHAO Haiyan S¨orn Ocylok Igor Kelbassa. STUDY ON CRACKS IN LASER DIRECT–CLADDED TITANIUM LAYER ON LOW CARBON STEEL. Acta Metall Sin, 2012, 48(2): 142-147.

Download:  PDF(844KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  By adjusting laser power and nozzle speed in laser cladding technology, crack–free titanium layer with even thickness and titanium mass percentage over 99%, was obtained on the substrate of low carbon steel without any intermediate layer when heat input was between 12—20 J/mm. The temperature field and the mechanical strain were simulated. Together with phase diagram and EDS, it was found that an interface zone, consisted of TiFe, (TiFe+β–Ti) eutectic compound and α–Ti, was formed between the titanium layer and the substrate. The interface zone is brittle and cracks occur in it. In titanium layer crack also occur if the mechanical strain exceeds the critical plasticity of metal. By reducing heat input, the mechanical strain decreases, thus a crack–free titanium layer with even thickness can be obtained.
Key words:  low carbon steel      clading Ti      laser cladding      crack      finite element analysis      strain analysis     
Received:  20 September 2011     
Fund: 

Supported by National Natural Science Foundation of China (Nos.50505019, 50935008 and 50975268), New Century Excellent Talents in University (No. NCET–07–0503) and Zhejiang Provincial Scientific Research Project (No.2009C21019)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00591     OR     https://www.ams.org.cn/EN/Y2012/V48/I2/142

[1] Draugelates U, Bouaifi B, Wesling V. Mater Corros, 1992; 43: 166

[2] Draugelates U, Bouaifi B, Steinberg H. Mater Corros, 1993; 44: 269

[3] Steinberg H. PhD Thesis, Technology University of Clausthal, Clausthal, 1996

[4] Chen Z K, Liu M, Zeng D C, Ma W Y. Laser J, 2009; 30: 55

(陈志坤, 刘敏, 曾德长, 马文有. 激光杂志, 2009; 30: 55)

[5] Chen H, Pan C X, Pan L, Tao X L. Heat Treat Met, 2002; 27: 5

(陈浩, 潘春旭, 潘邻, 陶锡麒. 金属热处理, 2002; 27: 5)

[6] Ghosh M, Chatterjee S. Mater Sci Eng, 2003; A358: 152

[7] Kato H, Abe S, Tomizawa T. J Mater Sci, 1997; 32: 5225

[8] Aleman B, Guitterrez I, Urcola J J. Mater Sci Technol, 1993; 36: 509

[9] Ghosh M, Kundu S, Chatterjee S, Mishra B. Mater Trans, 2005; 36A: 1891

[10] Kundu S, Chatterjee S. Mater Sci Eng, 2006; A425: 107

[11] Changqing A, Zangpeng J. J Less Common Mater, 1990; 162: 315

[12] Kundu S, Ghosh M, Laik A, Bhammurthy K, Kale G B, Chatterjee S. Mater Sci Eng, 2005; A407: 154

[13] Kamat G R. Weld J, 1988; 67: 44

[14] Tang R Z, Tian R Z. Binary Alloy Phase Diagram and Crystal Structure of Intermediate Phase. Changsha: Center South University Press, 2009: 551

(唐仁政, 田荣璋 编. 二元合金相图及中间相晶体结构. 长沙: 中南大学出版社,2009: 551)

[15] Li W, Zhang R L. J Changchun Univ, 1999; 9: 12

(李文, 张瑞林, 长春大学学报, 1999; 9: 12)

[16] Jiang S Y, Li S C. Rare Met Mater Eng, 2011; 40: 36

(蒋淑英, 李世春, 稀有金属材料与工程, 2011; 40: 36)

[17] Practical Handbook of Engineering Materials Editorial Board. Practical Handbook of Engineering Materials. 2nd Ed., Beijing: Standards Press of China, 2002: 8

(工程材料实用手册编委会. 工程材料实用手册(第2版). 北京: 中国标准出版社, 2002: 8)

[18] Shi C X, Li H D, Zhou L. Handbook of Materials Science and Engineering. Beijing: Chemical Industry Press, 2004: 1

(师昌绪, 李恒德, 周廉. 材料科学与工程手册. 北京: 化学工业出版社, 2004: 1)

[19] Zhu X K, Chao Y J. Comput Struct, 2002; 80: 967

[20] Zhou Z F, Zhang W Y. Welding Metallurgy and Metal Welding Characteristics. 2nd Ed., Beijing: Mechanical Industry Press, 1988: 196

(周振丰, 张文钺 合编, 焊接冶金与金属焊接性(第2版). 北京: 机械工业出版社, 1988: 196)
[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[4] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[5] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[6] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[7] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[8] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[9] ZHU Guoliang, KONG Decheng, ZHOU Wenzhe, HE Jian, DONG Anping, SHU Da, SUN Baode. Research Progress on the Crack Formation Mechanism and Cracking-Free Design of γ' Phase Strengthened Nickel-Based Superalloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 16-30.
[10] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[11] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[12] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
[13] FENG Kai, GUO Yanbing, FENG Yulei, YAO Chengwu, ZHU Yanyan, ZHANG Qunli, LI Zhuguo. Microstructure Controlling and Properties of Laser Cladded High Strength and High Toughness Fe-Based Coatings[J]. 金属学报, 2022, 58(4): 513-528.
[14] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[15] YU Chun, XU Jijin, WEI Xiao, LU Hao. Research Status of Ductility-Dip Crack Occurring in Nuclear Nickel-Based Welding Materials[J]. 金属学报, 2022, 58(4): 529-540.
No Suggested Reading articles found!