Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (11): 1470-1476    DOI: 10.3724/SP.J.1037.2011.00355
论文 Current Issue | Archive | Adv Search |
INFLUENCE OF WITHDRAWAL RATE ON MICROSTRUCTURES OF BLADE SHAPED DIRECTIONALLY SOLIDIFIED DZ125 SUPERALLOY
GE Bingming, LIU Lin, ZHANG Shengxia, ZHANG Jun, LI Yafeng, FU Hengzhi
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
Cite this article: 

GE Bingming LIU Lin ZHANG Shengxia ZHANG Jun LI Yafeng FU Hengzhi. INFLUENCE OF WITHDRAWAL RATE ON MICROSTRUCTURES OF BLADE SHAPED DIRECTIONALLY SOLIDIFIED DZ125 SUPERALLOY. Acta Metall Sin, 2011, 47(11): 1470-1476.

Download:  PDF(3481KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  As a precipitation hardened unidirectionally solidified Ni-based superalloy, DZ125 has been widely applied as structure materials in advanced aeroengine for gas turbine blades and vanes. In present, the paper on the influence of solidification parameters on microstructures have been largely published, but unfortunately, few of them have focused on giving a direct comparison between directional solidification characteristics in liquid metal cooling (LMC) and high rate solidification (HRS). In this paper, the influences of processing parameters on microstructures of blade shaped castings prepared both by LMC and HRS technique were studied. The results show that the dendrite structure and γ' precipitate in castings prepared by the same method are refined with elevated withdrawal rate; in the same solidification conditions, the LMC castings have finer dendrite structure and γ' precipitate than HRS, the larger the disparity between primary dendrite arm spacings in LMC and HRS castings, the thicker wall thickness is or the higher the withdrawal rate is. It is found that higher temperature gradient in front of solid/liquid interface can be obtained by LMC, and its variation with elevated withdrawal rate, however, is smaller than that by HRS. The γ+γ eutectic fraction is lower for LMC castings than HRS castings except for withdrawal rate of 70 μm/s, only at which more severe segregation than HRS's occurs. Chinese script type MC flakes between dendrites in HRS castings are larger at withdrawal rate of 110 μm/s.
Key words:  Ni-based superalloy      directional solidification      withdrawal rate      thermal gradient      liquid metal cooling      high rate solidification     
Received:  07 June 2011     
Fund: 

Supported by National Natural Science Foundation of China (Nos.50931004 and 50827102), National Basic Research Program of China (Nos.2006CB605202 and 2010CB631202) and High Technology Research and Development Program of China (No.2007AA03Z552)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00355     OR     https://www.ams.org.cn/EN/Y2011/V47/I11/1470

[1] Versnyder F I, Shank M E. Mater Sci Eng, 1970; A6: 213

[2] Chen J Y, Zhao B, Feng Q, Cao L M, Sun Z Q. Acta Metall Sin, 2010; 46: 897

(陈晶阳, 赵宾, 冯 强, 曹腊梅, 孙祖庆. 金属学报, 2010; 46: 897)

[3] Konter M, Kats E, Hofmann N A. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, Mclean M, Olson S, Schirra J J eds., Superalloys 2000, Warrendale, PA: TMS, 2000: 189

[4] Nakagawa Y G, Ohotomo Y, Saiga Y. In: Tien J K, Gell M, Maurer G, Wlodek S T eds., Superalloys 1980, Warrendale, PA: TMS, 1980: 267

[5] Giamei A F, Tschinkel J G. Metall Trans, 1976; 7A: 1427

[6] Fu H Z. Directional Solidification and Processing of Advanced Materials. Beijing: Science Press, 2008: 492

(傅恒志. 先进材料定向凝固. 北京: 科学出版社, 2008: 492)

[7] McLean M. Directionally Solidified Materials for High Temperature Service. UK: The Metals Society, 1983: 11

[8] Chen H J, Wever H. J Mater Eng, 2000; 11: 45

(陈鸿均, Wever H. 材料工程, 2000; 11: 45 )

[9] Jiang L W, Li S S, Qiu Z C, Han Y F. Acta Metall Sin, 2009; 45: 547

(蒋立武, 李树索, 邱自成, 韩亚芳. 金属学报, 2009; 45: 547)

[10] Lamm M, Singer R F. Metall Mater Trans, 2007; 38A: 1177

[11] Whitesell H S, Li L, Overfelt R A. Metall Mater Trans, 2000; 31B: 546

[12] Zhang J, Li J G, Jin T, Sun X F, Hu Z Q. J Mater Sci Technol, 2010; 26: 889

[13] Takao M, Toshiharu K, Yutaka K, Hiroshi H. Acta Mater, 2004; 52: 3737

[14] Bhambri A K, Kattamis T Z, Morral J E. Matall Trans, 1975; 6B: 532

[15] Zupaniˇc F, Bomˇcina T, Kriˇzman A, Markoli B, Spaic S. Scr Mater, 2002; 46: 667

[16] Kearsy R M, Beddoes J C, Jaansalu K M, Thompson W T, Au P. In: Green K A, Pollock TM, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale, PA: TMS, 2004: 723

[17] Kuleshova E A, Cherkasova E R, Logunov A V. Metalloved Term Obrab Met, 1981; 6: 20

[18] Guo X P, Fu H Z, Sun J H. Metall Mater Trans, 1997; 28A: 997

[19] Liu L, Sommer F, Fu H Z. Scr Metall Mater, 1994; 30: 587

[20] Zhao K, Ma Y X, Lou L H. J Alloys Compd, 2009; 475: 648

[21] Elliott A J, Pollock T M, Tin S, King W T, Huang S C, Gigliotti M F. Metall Mater Trans, 2004; 35A: 3221

[22] Zhang J, Lou L H. J Mater Sci Technol, 2007; 23: 289

[23] G¨und¨uz M, C¸ad?rl? E. Mater Sci Eng, 2002; A327: 167

[24] Hunt J D. Solidification and Casting of Metals. London: The Metal Society, 1979: 3

[25] ZhangWG. PhD Thesis, Northwestern Polytechnical University, Xi’an, 2009

(张卫国. 西北工业大学博士论文, 西安, 2009)

[26] Min Z X, Shen J, Wang L S, Feng Z R, Liu L, Fu H Z. Acta Metall Sin, 2010; 46: 1075

(闵志先, 沈军, 王灵水, 冯周荣, 刘林, 傅恒志. 金属学报, 2010; 46: 1075)

[27] Zheng Y R. Acta Metall Sin, 1986; 22: 119

(郑运荣. 金属学报, 1986; 22: 119)

[28] Liu L. PhD Thesis, Xi’an: Northwestern Polytechnical University, 1988

(刘林. 西北工业大学博士论文, 西安, 1988)
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[4] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[5] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[6] LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. 金属学报, 2023, 59(3): 387-398.
[7] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[8] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[9] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[10] ZHU Yuping, Naicheng SHENG, XIE Jun, WANG Zhenjiang, XUN Shuling, YU Jinjiang, LI Jinguo, YANG Lin, HOU Guichen, ZHOU Yizhou, SUN Xiaofeng. Precipitation Behavior of W-Rich Phases in a High W-Containing Ni-Based Superalloys K416B[J]. 金属学报, 2021, 57(2): 215-223.
[11] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[12] ZHANG Beijiang,HUANG Shuo,ZHANG Wenyun,TIAN Qiang,CHEN Shifu. Recent Development of Nickel-Based Disc Alloys andCorresponding Cast-Wrought Processing Techniques[J]. 金属学报, 2019, 55(9): 1095-1114.
[13] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[14] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[15] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
No Suggested Reading articles found!