Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (1): 57-61    DOI:
论文 Current Issue | Archive | Adv Search |
BEHAVIOR AND MECHANISM OF HOT WORK-HARDENING FOR 316L STAINLESS STEEL
SONG Renbo1); XIANG Jianying1); HOU Dongpo1); REN Peidong2)
1 School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 2 Technological Center of Jiuquan Iron $\&$ Steel Co. Ltd.; Jiayuguan 735100
Cite this article: 

SONG Renbo XIANG Jianying HOU Dongpo REN Peidong. BEHAVIOR AND MECHANISM OF HOT WORK-HARDENING FOR 316L STAINLESS STEEL. Acta Metall Sin, 2010, 46(1): 57-61.

Download:  PDF(1005KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The characteristics of hot work-hardening for 316L stainless steel have been systematically studied through high temperature compression tests on the Gleeble-1500 thermal simulation testing machine. According to Ludwik true stress-strain model, the experimental data has been regressed by using nonlinear fitting method, and the $n$ value in Ludwik model, a comprehensive index which reflects the competitive result between work-hardening and softening, has been calculated with Crussard-Jaoul method. The dynamic recrystallization and twinning were observed by OM and TEM. The experiments reveal that 316L stainless steel is easy to work-hardening during hot deformation, and deformation rate can effect nC-J-ε curves and variation law; There is no peak stress on its true stress-strain curves, but partial dynamic recrystallization has occurred during hot working process. This incomplete softening mechanism can't counteract the effect of hot work-hardening, so the true stress-strain curves still rise with deformation increasing; In addition, twinning occurred during hot working is one of the major mechanisms of hot work-hardening.

Key words:  316L stainless steel      hot work-hardening      Crussard-Jaoul analysis      dynamic recrystallization      twin     
Received:  10 July 2009     
ZTFLH: 

TG142.7

 

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2010/V46/I1/57

[1] ASM, translated by Ma J R, Chen L M. Metals Handbook. Beijing: Machinery Industry Press, 1994: 7
(ASM, 马九荣, 陈立敏译. 金属手册. 北京: 机械工业出版社, 1994: 7)

[2] Wang S T, Yang K, Shan Y Y, Li L F. Acta Metall Sin, 2007; 43: 171
(王松涛, 杨柯, 单以银, 李来风. 金属学报, 2007; 43: 171)
[3] Soussan A, Degallaix S. Mater Sci Eng, 1991; A142: 169
[4] Ludwigson D C, Berger J A. JISI, 1969; 207: 63
[5] Simmons J W. Acta Mater, 1997; 45: 2467
[6] Lan S H, Lee H J, Lee S H. Mater Des, 2009; 30: 3881
[7] Jha B K, Ram A, Sagar D V. J Mater Sci Lett, 1987; 6: 891
[8] Mejia I, Maldonado C, Benito J A. Mater Sci Forum, 2006; 509: 37
[9] Remy L. Metall Trans, 1981; 12A: 387
[10] Karaman I, Sehitoglu H, Maier H J. Acta Mater, 2001; 49: 3919
[11] Poliak E I, Jonas J J. ISIJ Int, 2003; 43: 684
[12] McQueen H J, Yue S, Ryan N D, Fry E. J Mater Process Technol, 1995; 53: 293
[13] Adler P H, Olson G B, Owen W S. Metall Trans, 1985; 17A: 1725

[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[4] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[5] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[6] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[7] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[8] GAO Dong, ZHOU Yu, YU Ze, SANG Baoguang. Selection of Twin Variants in Dynamic Plastic Deformation of Pure Ti at Liquid Nitrogen Temperature[J]. 金属学报, 2022, 58(9): 1141-1149.
[9] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[10] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[11] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[12] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[13] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
[14] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[15] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
No Suggested Reading articles found!