Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (9): 1106-1110    DOI:
论文 Current Issue | Archive | Adv Search |
EFFECT OF PRESTRAIN ON THE SUPERPLASTIC DEFORMATION BEHAVIOR OF LOW-ALLOY HIGH-CARBON STEEL
ZHANG Han; BAI Bingzhe; FANG Hongsheng
Key Laboratory for Advanced Materials of Ministry of Education; Department of Materials Science and Engineering; Tsinghua University; Beijing 100084
Cite this article: 

ZHANG Han BAI Bingzhe FANG Hongsheng. EFFECT OF PRESTRAIN ON THE SUPERPLASTIC DEFORMATION BEHAVIOR OF LOW-ALLOY HIGH-CARBON STEEL. Acta Metall Sin, 2009, 45(9): 1106-1110.

Download:  PDF(1016KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

There were some reports on superplasticity of ultra-high carbon steels in the last several decades, mainly referring to the superplasticity of fine-equiaxial double-phase microstructure (fine ferrite + cementite particles). However, in order to get the fine--equiaxial double--phase microstructure, very complicated pre-treatment was needed. An exploration to obtain superplastic microstructure through simple uniaxial compression at pearlite transformation incubation temperature was conducted using Gleeble 1500D in this paper. The microstructural evolution processes of the steel during deformation included (1) pearlite transformation, (2) cementite spheroidization and (3) ferrite recrystallization. The (2) and (3) processes start before the finish of pearlite transformation. Two micro-processes of cementite spheroidization were shown in the experiments. One is that the cementite lamellae were dissolved and broken. This process results in the formation of relatively coarse cementite particles (100-200 nm). Another is that finer cementite particles (10-30 nm) reprecipitated in the ferrite during ferrite recrystallization. Deformation during pearlite incubation period can accelerate pearlite transformation and cementite spheroidization. The above processes lead to form fine double-phase microstructure with sub--micrometer and nanometer cementite particles distributed uniformly in fine ferrite (about 1 μm). Samples with the fine double--phase microstructure show the m value of 0.40 in the strain rate range of 1×10-4-2×10-4 s-1 at 700 ℃. The flow stress under different strain rates reduces with the increase of the prestrain. For example, under the strain rate of 1×10-4 s-1 at 700 ℃, the flow stress of the samples with prestrain of 1.2 is only 70 MPa, much lower than 120 MPa of the samples without prestrain. The dispersed cementite particles can prevent ferrite grains from growing during deformation process at high temperature, as a result, the stability of the fine-equiaxial double-phase microstructure is ensured, which is the microstructural condition realizing superplasticity.

Key words:  low-alloy high-carbon steel      spheroidizing      refinement      flow stress      superplasticity      m value     
Received:  04 January 2009     
ZTFLH: 

TF777.1

 
Fund: 

Supported by National Basic Research Program of China (No.2004CB619105)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I9/1106

[1] Howe H M. The Metallurgy of Steel. 2nd ed, New York: Scientific Publishing Company, 1981: 16
[2] Sherby O D. ISIJ Int, 1999; 39: 637
[3] Sherby O D,Walser B, Young C M, Cady E M. Scr Metall, 1975; 9: 569
[4] Sherby O D, Oyama T, Kum D W, Walser B, Wadsworth J. J Met, 1985; 37(6): 50
[5] Oyama T, Sherby O D, Wadsworth J, Walser B. Scr Metall, 1984; 18: 799
[6] Tsuzaki K, Sato E, Furimoto S, Furuhara T, Maki T. Scr Mater, 1999; 40: 675
[7] Sato E, Furimoto S, Furuhara T, Tsuzaki K, Maki T. Mater Sci Forum, 1999; 304–306: 133
[8] Seto K, Kato T, Abe H. Mater Res Soc Symp Proc, 1990; 196: 99
[9] Matsumura Y, Yada H. Trans ISIJ, 1987; 27: 492
[10] Huang Q S, Li L F, Yang W Y, Sun Z Q. Acta Metall Sin, 2007; 43: 724
(黄青松, 李龙飞, 杨王玥, 孙祖庆. 金属学报, 2007; 43: 724)

[11] Hart E W. Acta Metall, 1967; 15: 351
[12] Nieh T G, Wadsworth J, Sherby O D. Superplasticity in Metals and Ceramics. New York: Cambridge University Press, 2005: 189
[13] Hu X H, Houtte P V, Leibeherr M, Walentek A, Seefeldt M, Vandekinderen H. Acta Mater, 2006; 54: 1029
[14] Song R, Ponge D, Raabe D, Kaspar R. Acta Mater, 2005; 53: 845
[15] Shin D H, Kim Y S, Lavernia E J. Acta Mater, 2001; 49: 2387
[16] Ivanisenko Y, Lojkowski W, Valiev R Z, Fecht H J. Acta Mater, 2003; 51: 5555

[1] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[2] WU Guohua, TONG Xin, JIANG Rui, DING Wenjiang. Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect[J]. 金属学报, 2022, 58(4): 385-399.
[3] LIU Jie, XU Le, SHI Chao, YANG Shaopeng, HE Xiaofei, WANG Maoqiu, SHI Jie. Effect of Rare Earth Ce on Sulfide Characteristics and Microstructure in Non-Quenched and Tempered Steel[J]. 金属学报, 2022, 58(3): 365-374.
[4] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[5] ZHAO Wanchen, ZHENG Chen, XIAO Bin, LIU Xing, LIU Lu, YU Tongxin, LIU Yanjie, DONG Ziqiang, LIU Yi, ZHOU Ce, WU Hongsheng, LU Baokun. Composition Refinement of 6061 Aluminum Alloy Using Active Machine Learning Model Based on Bayesian Optimization Sampling[J]. 金属学报, 2021, 57(6): 797-810.
[6] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[7] LI Gen, LAN Peng, ZHANG Jiaquan. Solidification Structure Refinement in TWIP Steel by Ce Inoculation[J]. 金属学报, 2020, 56(5): 704-714.
[8] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[9] WU Huajian, CHENG Renshan, LI Jingren, XIE Dongsheng, SONG Kai, PAN Hucheng, QIN Gaowu. Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy[J]. 金属学报, 2020, 56(10): 1423-1432.
[10] ZHANG Jun,JIE Ziqi,HUANG Taiwen,YANG Wenchao,LIU Lin,FU Hengzhi. Research and Development of Equiaxed Grain Solidification and Forming Technology for Nickel-Based Cast Superalloys[J]. 金属学报, 2019, 55(9): 1145-1159.
[11] Liping DENG,Kaixuan CUI,Bingshu WANG,Hongliang XIANG,Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. 金属学报, 2019, 55(8): 976-986.
[12] Xiangru GUO, Chaoyang SUN, Chunhui WANG, Lingyun QIAN, Fengxian LIU. Investigation of Strain Rate Effect by Three-Dimensional Discrete Dislocation Dynamics for fcc Single Crystal During Compression Process[J]. 金属学报, 2018, 54(9): 1322-1332.
[13] Shubo LI, Wenbo DU, Xudong WANG, Ke LIU, Zhaohui WANG. Effect of Zr Addition on the Grain Refinement Mechanism of Mg-Gd-Er Alloys[J]. 金属学报, 2018, 54(6): 911-917.
[14] Guangming XIE, Zongyi MA, Peng XUE, Zongan LUO, Guodong WANG. Effects of Tool Rotation Rates on Superplastic Deformation Behavior of Friction Stir Processed Mg-Zn-Y-Zr Alloy[J]. 金属学报, 2018, 54(12): 1745-1755.
[15] Huiyuan WANG, Hang ZHANG, Xinyu XU, Min ZHA, Cheng WANG, Pinkui MA, Zhiping GUAN. Current Research and Future Prospect on Microstructure Stability of Superplastic Light Alloys[J]. 金属学报, 2018, 54(11): 1618-1624.
No Suggested Reading articles found!