Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (7): 892-896    DOI:
论文 Current Issue | Archive | Adv Search |
EFFECT OF PRECIPITATE ON PLC EFFECT IN 2024 Al ALLOY
XIONG Shaomin; ZHANG Qingchuan; CAO Pengtao; XIAO Rui
Key Laboratory of Mechanical Behavior and Design of Materials; Chinese Academy of Sciences; University of Science and Technology of China; Hefei 230027
Cite this article: 

XIONG Shaomin ZHANG Qingchuan CAO Pengtao XIAO Rui. EFFECT OF PRECIPITATE ON PLC EFFECT IN 2024 Al ALLOY. Acta Metall Sin, 2009, 45(7): 892-896.

Download:  PDF(1255KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

It is normally accepted that the interaction among solute atoms, dislocations
and precipitate leads to Portevin--Le Chatelier (PLC) effect during the plastic
deformation of alloys. Precipitate is directly responsible for some inverse behavior of
PLC effect, such as the inversion of the temperature dependence of critical strain;
because these behaviors appear only when precipitate exist in the alloys. In this paper,
the solute concentration in matrix and the fraction of the precipitate in 2024 Al alloy
are changed by heat treatment. Subsequently, tensile experiments are conducted at
room temperature (25 ℃) and low temperature (-100 ℃) on these treated specimens.
The magnitude of serration and the critical strain of the serrated flow are analyzed and
the results show that the diffusing solute atoms are necessary for the appearance of
PLC effect while the cutting of the precipitate particles alone can not lead to this
phenomenon. The mobile dislocations will be blocked and piled up strongly in the front
of precipitate and thus precipitate will have an influence on PLC effect. This influence
is obvious during tensile tests at medium strain rate.

Key words:  2024 Al alloy      Portevin--Le Chatelier (PLC) effect      magnitude of serration      critical stain      heat treatment     
Received:  23 February 2009     
ZTFLH: 

O34

 
  O48

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.10872189 and 10732080)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I7/892

[1] Pottevin A, Chatelier F L. C R Acad Sci Paris, 1923; 176: 507
[2] Pottevin A, Chatelier F L. Trans Am Soc Steel Treat, 1924; 5: 457
[3] Rizzi E, H¨ahner P. Int J Plast, 2004; 20: 121
[4] Cottrell A H. Dislocations and Plastic Flow in Crystals. Oxford: Oxford University Press, 1953: 134
[5] Cottrell A H. Philos Mag, 1953; 44: 829
[6] Miguel M C, Vespignani A, Zapperi S, Weiss J, Grasso J R. Nature, 2001; 410: 67
[7] Yoshinaga H, Morozumi S. Philos Mag, 1971; 23: 1351
[8] Yoshinaga H, Morozumi S. Philos Mag, 1971; 23: 1367
[9] Estrin Y, Kubin L P. In: M¨uhlhaus H B ed., Continuum Models for Materials with Microstructures, New York: John Wiley & Sons Ltd., 1995: 395
[10] Pink E, Grinberg A. Acta Metall, 1982; 30: 2153
[11] Jiang H F, Zhang Q C, Xu Y H, Wu X P. Acta Phys Sin, 2006; 55: 409
(江慧丰, 张青川, 徐毅豪, 伍小平. 物理学报, 2006; 55: 409)

[12] Tan Q. Acta Phys Sin, 1994; 43: 1658
(谭启. 物理学报, 1994; 43: 1658)

[13] Brechet Y, Estrin Y. Acta Metall Mater, 1995; 43: 955
[14] Zhu A W. Acta Mater, 1998; 46: 3211
[15] Chmel´?k F, Pink E, Kr´ol J, Bal´?k J, Pesicka J, Luk´ac P.
Acta Mater, 1998; 46: 4435
[16] Erwin P, Janusz K. Acta Metall Mater, 1995; 43: 2351
[17] Li H X, Park J K. Mater Sci Eng, 2000; A280: 156
[18] Sun L, Zhang Q C. Yan S P, Jiang H F, Liu H W, Lu J Y, Wu X P. Acta Phys Sin, 2007; 56: 3411
(孙亮, 张青川, 晏顺平, 江慧丰, 刘颢文, 卢俊勇, 伍小平. 物理学报, 2007; 56: 3411)

[19] Sun L, Zhang Q C, Jiang H F. Acta Metall Sin, 2006; 42: 1248
(孙亮, 张青川, 江慧丰. 金属学报, 2006; 42: 1248)

[20] Jiang H F, Zhang Q C, Xu Y H, Wu X P. Acta Metall Sin, 2006; 42: 139
(江慧丰, 张青川, 徐毅豪, 伍小平. 金属学报, 2006; 42: 139)

[21] Kubin L P, Estrin Y. Acta Metall Mater, 1990; 38: 697

[1] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[2] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[3] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[4] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[5] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[6] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[7] ZHANG Jiarong, LI Yanfen, WANG Guangquan, BAO Feiyang, RUI Xiang, SHI Quanqiang, YAN Wei, SHAN Yiyin, YANG Ke. Effects of Heat Treatment on Microstructure and Mechanical Properties of a Bimodal Grain Ultra-Low Carbon 9Cr-ODS Steel[J]. 金属学报, 2022, 58(5): 623-636.
[8] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[9] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
[10] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
[11] WANG Di, HUANG Jinhui, TAN Chaolin, YANG Yongqiang. Review on Effects of Cyclic Thermal Input on Microstructure and Property of Materials in Laser Additive Manufacturing[J]. 金属学报, 2022, 58(10): 1221-1235.
[12] WANG Wenquan, WANG Suyu, CHEN Fei, ZHANG Xinge, XU Yuxin. Microstructure and Mechanical Properties of TiN/Inconel 718 Composites Fabricated by Selective Laser Melting[J]. 金属学报, 2021, 57(8): 1017-1026.
[13] WANG Yue, WANG Jijie, ZHANG Hao, ZHAO Hongbo, NI Dingrui, XIAO Bolv, MA Zongyi. Effects of Heat Treatments on Microstructure and Mechanical Properties of AlSi10Mg Alloy Produced by Selective Laser Melting[J]. 金属学报, 2021, 57(5): 613-622.
[14] ZHANG Shaohua, XIE Guang, DONG Jiasheng, LOU Langhong. Investigation on Eutectic Dissolution Behavior of Single Crystal Superalloy by Differential Scanning Calorimetry[J]. 金属学报, 2021, 57(12): 1559-1566.
[15] HAO Zhibo, GE Changchun, LI Xinggang, TIAN Tian, JIA Chonglin. Effect of Heat Treatment on Microstructure and Mechanical Properties of Nickel-Based Powder Metallurgy Superalloy Processed by Selective Laser Melting[J]. 金属学报, 2020, 56(8): 1133-1143.
No Suggested Reading articles found!