Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (7): 769-780    DOI:
论文 Current Issue | Archive | Adv Search |
ESSENTIAL CHARACTERISTICS AND INFLUENTIAL FACTORS FOR VERY--HIGH--CYCLE FATIGUE BEHAVIOR OF METALLIC MATERIALS
HONG Youshi; ZHAO Aiguo; QIAN Gui'an
State Key Laboratory of Nonlinear Mechanics; Institute of Mechanics; Chinese Academy of
Sciences; Beijing 100190
Cite this article: 

HONG Youshi ZHAO Aiguo QIAN Gui'an. ESSENTIAL CHARACTERISTICS AND INFLUENTIAL FACTORS FOR VERY--HIGH--CYCLE FATIGUE BEHAVIOR OF METALLIC MATERIALS. Acta Metall Sin, 2009, 45(7): 769-780.

Download:  PDF(2194KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The research on very–high–cycle fatigue (VHCF) of metallic materials has become a new horizon in the field of metal research since 1980s. The behaviors of crack initiation and propagation, and the characteristics of S–N curve for metallic materials in the VHCF regime all differ from those in the low cycle and high cycle fatigue regimes. For VHCF, the cyclic stress is below the level of conventional fatigue limit and the crack initiation tends to shift from surface to interior. The defects of material, including inclusions, grain–boundary, phase interface and other micro–inhomogeneities may become interior crack initiation site. The S-N curve containing VHCF regime may present "duplex" or "step-wise" shape. The behaviors of VHCF for metallic materials are substantially affected by the strength of material, loading frequency, loading environment, etc. This paper attempts to review the research progress of essential characteristics and influential factors for VHCF behavior of metallic materials. In addition, the aspects for further research on VHCF of metallic materials are proposed, which are the process and mechanism of fatigue crack initiation and early growth, the effects of loading frequency and the environment on VHCF property, and development of quantitative model for VHCF.

Key words:  metallic material      very--high--cycle fatigue      crack initiation      S--N curve      fatigue strength      loading frequency      loading environment     
Received:  25 May 2009     
ZTFLH: 

TG113.2

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.10772178, 10721202 and 10532070)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I7/769

[1] W¨ohler A. Engineering, 1867; 2: 160
[2] ASTM Standard E468–90, Annual Book of ASTM Standards 2006, Section 3, vol.03.01, 2006: 556
[3] Kikukawa M, Ohji K, Ogura K. J Basic Eng, 1965; 87D: 857
[4] Naito T, Ueda H, Kikuchi M. J Soc Mater Sci Jpn, 1983; 32: 1162
[5] Naito T, Ueda H, Kikuchi M. Metall Mater Trans, 1984; 15A: 1431
[6] Takeuchi E, Furuya Y, Nagashima N, Matsuoka S. Fatigue Fract Eng Mater Struct, 2008; 31: 599
[7] Ranc N, Wagner D, Paris P C. Acta Mater, 2008; 56: 4012
[8] Marines–Garcia I, Paris P C, Tada H, Bathias C, Lados D. Eng Fract Mech, 2008; 75: 1657
[9] Liu Y B, Yang Z G, Li Y D, Chen S M, Li S X, Hui W J, Weng Y Q. Mater Sci Eng, 2008; A497: 408
[10] Dominguez A G M. Mech Mater, 2008; 40: 636
[11] Makino T. Int J Fatigue, 2008; 30: 1409
[12] Akiniwa Y, Stanzl–Tschegg S, Mayer H, Wakita M, Tanaka K. Int J Fatigue, 2008; 30: 2057
[13] Sohar C R, Betzwar–Kotas A, Gierl C,Weiss B, Danninger H. Int J Fatigue, 2008; 30: 1137
[14] Stanzl S E, Tschegg E K, Mayer H. Int J Fatigue, 1986; 8: 195
[15] Luk´aˇs P, Kunz L. Fatigue Fract Eng Mater Struct, 2002; 25: 747
[16] Murakami Y, Yokoyama N N, Nagata J. Fatigue Fract Eng Mater Struct, 2002; 25: 735
[17] Bathias C, Paris P C. Gigacycle Fatigue in Mechanical Practice. New York: Marcel Dekker, 2005: 1
[18] Murakami Y, Nomoto T, Ueda T, Murakami Y. Fatigue Fract Eng Mater Struct, 2000; 23: 903
[19] Murakami Y, Nomoto T, Ueda T, Murakami Y. Fatigue Fract Eng Mater Struct, 2000; 23: 893
[20] Murakami Y, Nomoto T, Ueda T. Fatigue Fract Eng Mater Struct, 1999; 22: 581
[21] Mughrabi H. Fatigue Fract Eng Mater Struct, 1999; 22: 633
[22] Chapetti M D, Tagawa T, Miyata T. Mater Sci Eng, 2003; A356: 236
[23] Harlow D G, Wei R P, Sakai T, Oguma N. Int J Fatigue, 2006; 28: 1479
[24] Shiozawa K, Lu L, Ishihara S. Fatigue Fract Eng Mater Struct, 2001; 24: 781
[25] Sakai T, Sato Y, OgumaN. Fatigue Fract Eng Mater Struct, 2002; 25: 765
[26] Zhou C E, Qian G A, Hong Y S. Key Eng Mater, 2006; 324–325: 1113
[27] Wang Q Y, Berard J Y, Rathery S, Bathias C. Fatigue Fract Eng Mater Struct, 1999; 22: 673
[28] Nishijima S, Kanazawa K. Fatigue Fract Eng Mater Struct, 1999; 22: 601
[29] Shiozawa K, Lu L. Fatigue Fract Eng Mater Struct, 2002; 25: 813
[30] Ochi Y, Matsumura T, Masaki K, Yoshida S. Fatigue Fract Eng Mater Struct, 2002; 25: 823
[31] Takai K, Honma Y, Izutsu K, Nagumo M. J Jpn Inst Met, 1996; 60: 1155
[32] Chapetti M D, Tagawa T, Miyata T. Mater Sci Eng, 2003; A356: 227
[33] Shiozawa K, Morii Y, Nishino S, Lu L. Int J Fatigue, 2006; 28: 1521
[34] Yang Z G, Li S X, Liu Y B, Li Y D, Li G Y, Hui W J, Weng Y Q. Int J Fatigue, 2008; 30: 1016
[35] Umezawa O, Nagai K. Metall Mater Trans, 1998; 29A: 809
[36] Chai G. Int J Fatigue, 2006; 28: 1533
[37] Zhang J M, Li S X, Yang Z G, Li G Y, Hui W J, Weng Y Q. Int J Fatigue, 2007; 29: 765
[38] Bathias C. Fatigue Fract Eng Mater Struct, 1999; 22: 559
[39] Zuo J H, Wang Z G, Han E H. Mater Sci Eng, 2008; A473: 147
[40] Yao W, Guo S. Int J Fatigue, 2008; 30: 172
[41] Yang F, Yin S M, Li S X, Zhang Z F. Mater Sci Eng, 2008; A491: 131
[42] Zhou C. PhD Dissertation, Institute of Mechanics, Chinese Academy of Sciences, 2005
(周承恩. 中国科学院力学研究所博士学位论文, 2005) [43] Hong Y S, Qian G A, Zhou C E. Proc 12th Int Conf on Fract, Ottawa, 2009 (in press)
[44] Asami K, Sugiyama Y. J Heat Treatment Tech Assoc, 1985; 25: 147
[45] Abe T, Furuya Y, Matsuoka S. Fatigue Fract Eng Mater Struct, 2004; 27: 159
[46] Sakai T, Sakai T, Okada K, Furuichi M, Nishikawa I, Sugeta A. Int J Fatigue, 2006; 28: 1486
[47] Qian G A, Hong Y S. Acta Metall Sin, 2009; 45 (in press)
(钱桂安, 洪友士. 金属学报, 2009; 45 (待发表)) [48] Kobayashi H, Ebara R, Ogura A, Kondo Y, Hamaya S. In: Allison J E, Jones J W, Larsen J M, Ritchie R O eds., Proc VHCF–4, Michigan: TMS, 2007: 319
[49] Hirukawa H, Furuya Y, Matsuoka S. JSME Int J Ser A– Solid Mech Mater Eng, 2006; 49: 337
[50] Sakai T, Chen Q, Uchiyama A, Nakagawa A, Ohnaka T. In: Allison J E, Jones J W, Larsen J M, Ritchie R O eds., Proc VHCF–4, Michigan: Learn·Network·Advance, TMS, 2007: 51
[51] Mayer H, Haydn W, Schuller R, Issler S, Bacher–H¨ochst M. Int J Fatigue, 2009; 31: 242
[52] Marines I, Dominguez G, Baudry G, Vittori J F, Rathery S, Doucet J P, Bathias C. Int J Fatigue, 2003; 25: 1037
[53] Furuya Y, Matsuoka S. Metall Mater Trans, 2002; 33A: 3421
[54] Furuya Y, Matsuoka S. Metall Mater Trans, 2004; 35A: 1715
[55] Wang H. PhD Dissertation, Southwest Jiaotong University, Chengdu, 2004
(王弘, 西南交通大学博士学位论文, 成都, 2004) [56] Furuya Y, Abe T, Matsuoka S. Fatigue Fract Eng Mater Struct, 2003; 26: 641
[57] Wang Q Y, Berard J Y, Dubarre A, Baudry G, Rathery S, Bathias C. Fatigue Fract Eng Mater Struct, 1999; 22: 667
[58] Bai B, Xu X, Yu Y, Cui W, Gu J. In: Allison J E, Jones J W, Larsen J M, Ritchie R O eds., Proc VHCF–4, Michigan: Learn·Network·Advance, TMS, 2007: 107
[59] Zettl B, Stanzl–Tschegg S, Mayer H. In: Allison J E, Jones J W, Larsen J M, Ritchie R O eds., Proc VHCF–4, Michigan: Learn·Network·Advance, TMS, 2007: 123
[60] Yan G L. Master Thesis, Southwest Jiaotong University, Chengdu, 2005
(闫桂玲, 西南交通大学硕士学位论文, 成都, 2005) [61] Bayraktar E, Garcias I M, Bathias C. Int J Fatigue, 2006; 28: 1590
[62] Li T, Liu Y J, Sriraman M R, Wang Q Y. In: Allison J E, Jones J W, Larsen J M, Ritchie R O eds., Proc VHCF–4, Michigan: Learn·Network·Advance, TMS, 2007: 247
[63] Wagner V, Ebel–Wolf B, Walther F, Eifler D. In: AllisonJ E, Jones J W, Larsen J M, Ritchie R O eds., Proc VHCF–4, Michigan: Learn·Network·Advance, TMS, 2007: 137
[64] Zettl B, Mayer H, Ede C, Stanzl–Tschegg S. Int J Fatigue, 2006; 28: 1583
[65] Marines–Garcia I, Paris P C, Tada H, Bathias C. Mater Sci Eng, 2007; A468–470: 120
[66] Kobayashi H, Todoroki A, Oomura T, Sano T, Takehana T. Int J Fatigue, 2006; 28: 1633
[67] Zhang Z Y. Master Thesis, Southwest Jiaotong University, Chengdu, 2007
(张真源, 西南交通大学硕士学位论文, 成都, 2007) [68] Nascimento M P, Souza R C, Pigatin W L, Voorwald H J C. Int J Fatigue, 2001; 23: 607
[69] Bathias C, Drouillac L, Le Fran¸cois P. Int J Fatigue, 2001; 23: S143
[70] Ebara R. Fatigue Fract Eng Mater Struct, 2002; 25: 855
[71] Dieter G E. Engineering Design, New York: McGraw Hill, 1983: 377
[72] Marines I, Bin X, Bathias C. Int J Fatigue, 2003; 25: 1101
[73] Furuya Y, Matsuoka S, Abe T, Yamaguchi K. Scr Mater, 2002; 46: 157
[74] Liaw P K, Wang H, Jiang L, Wang B, Huang J Y, Kuo R C, Huang J G. Scr Mater, 2000; 42: 389
[75] Laird C, Charsley P. In: Wells J M, Buck O, Roth L D, Tien J K eds., Ultrasonic Fatigue, Proc 1st Int Conf on Fatigue and Corrosion Fatigue up to Ultrasonic Frequencies, Philadelphia: The Metallurgical Society of the American Institute of Mining, Metallurgical and Petroleum Engineers (AIME), 1982: 187
[76] Buchinger L, Stanzl S, Laird C. Philos Mag, 1984; 50A: 275
[77] Buchinger L, Stanzl S, Laird C. Philos Mag, 1990; 62A: 633
[78] Basinski Z S, Korbel A S, Basinski S J. Acta Metall, 1980; 28: 191
[79] Mughrabi H. Acta Metall, 1983; 31: 1367
[80] Mughrabi H. Mater Sci Eng, 1978; 33: 207
[81] Roth L D, Willertz L E, Leax T R. In: Wells J M, Buck O, Roth L D, Tien J K eds., Ultrasonic Fatigue, Proc 1st Int Conf on Fatigue and Corrosion Fatigue up to Ultrasonic Frequencies, Philadelphia: The Metallurgical Society of the American Institute of Mining, Metallurgical and Petroleum Engineers (AIME), 1982: 265
[82] Taylor D, Knott JF. In: Proc 6th Int Conf Fracture, New Delhi: Pergamon Press, 1984; 3: 1759
[83] Lukas P, Kunz L, Knesl Z, Weiss B, Stickler R. Mater Sci Eng, 1985; 70: 91
[84] Meininger J M, Gibeling J C. Metall Trans, 1992; 23A: 3077
[85] Papakyriacou M, Mayer H, Pypen C, Plenk H Jr, Stanzl– Tschegg S. Mater Sci Eng, 2001; A308: 143
[86] Haberz K, Pippan R, Stuwe H P. In: Bailon J P, Dickson J I eds., Proc of the 5th Int Conf on Fatigue and Fatigue Thresholds, Montreal: Engineering Materials Advisory Services (EMAS) Publishing, 1993: 525
[87] Stanzl S E. J Soc Environ Eng, 1986; 25: 11
[88] Sakamoto H, Saiki H. Eng Fract Mech, 1994; 49: 317
[89] Sakamoto H, Takezono S. Eng Fract Mech, 1988; 31: 463
[90] Yokobori T, Sato K. Eng Fract Mech, 1976; 8: 81
[91] Holper B, Mayer H, Vasudevan A K, Stanzl–Tschegg S E. Int J Fatigue, 2003; 25: 397
[92] Holper B, Mayer H, Vasudevan A K, Stanzl–Tschegg S E. Int J Fatigue, 2004; 26: 27
[93] ShihY S, Chen J J. Nucl Eng Design, 1999; 191: 225
[94] Baik Y M, Kim K S. Int J Fatigue, 2001; 23: 417
[95] Makhlouf K, Jones J W. Int J Fatigue, 1993; 15: 163
[96] Stanzl S E, Tschegg E K. In: Lewis J C, Sines G eds., Fracture Mechanics: 14th Symposium Vol.II: Testing and Applications, ASTM STP 791, Philadelphia: American Society for Testing and Materials, 1983: 3
[97] Hoffelner W. In: Wells J M, Buck O, Roth L D, Tien J K eds., Ultrasonic Fatigue, Proc 1st Int Conf on Fatigue and Corrosion Fatigue up to Ultrasonic Frequencies, Philadelphia: The Metallurgical Society of the American Institute of Mining, Metallurgical and Petroleum Engineers (AIME), 1982: 461
[98] Boyce B L, Ritchie R O. Eng Fract Mech, 2001; 68: 129
[99] Ni J G. J Aerospace Power, 1995; 10: 245
(倪金刚. 航空动力学报, 1995; 10: 245) [100] Marines I, Dominguez G, Baudry G, Vittori J F, Rathery S, Doucet J P, Bathias C. Int J Fatigue, 2003; 25: 1037
[101] Nakajima M, Tokaji K, Itoga H, Ko H N. Fatigue Fract Eng Mater Struct, 2003; 26: 1113
[102] Tokaji K, Ko H N, Nakajima M, Itoga H. Mater Sci Eng, 2003; A345: 197
[103] Petit J, Sarrazin–Baudoux C. Int J Fatigue, 2006; 28: 1471
[104] Stanzl–Tschegg S E. Fatigue Fract Eng Mater Struct, 1999; 22: 567
[105] Ebara R. Int J Fatigue, 2006; 28: 1465

[1] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[2] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[3] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[4] WANG Jiangwei, CHEN Yingbin, ZHU Qi, HONG Zhe, ZHANG Ze. Grain Boundary Dominated Plasticity in Metallic Materials[J]. 金属学报, 2022, 58(6): 726-745.
[5] ZHANG Xiancheng, ZHANG Yong, LI Xiao, WANG Zimeng, HE Chenyun, LU Tiwen, WANG Xiaokun, JIA Yunfei, TU Shantung. Design and Manufacture of Heterostructured Metallic Materials[J]. 金属学报, 2022, 58(11): 1399-1415.
[6] WEN Bin, TIAN Yongjun. Mechanical Behaviors of Nanotwinned Metals and Nanotwinned Covalent Materials[J]. 金属学报, 2021, 57(11): 1380-1395.
[7] LIU Ming, YAN Fuwen, GAO Chenghui. Effects of Progressive Normal Force on Microscratch Responses of Metallic Materials[J]. 金属学报, 2021, 57(10): 1333-1342.
[8] Mindong CHEN, Fan ZHANG, Zhiyong LIU, Chaohui YANG, Guoqing DING, Xiaogang LI. Galvanic Series of Metals and Effect of Alloy Compositions on Corrosion Resistance in Sanya Seawater[J]. 金属学报, 2018, 54(9): 1311-1321.
[9] Feng LIU, Linke HUANG, Yuzeng CHEN. Concurrence of Phase Transition and Grain Growth in Nanocrystalline Metallic Materials[J]. 金属学报, 2018, 54(11): 1525-1536.
[10] Zhefeng ZHANG, Rui LIU, Zhenjun ZHANG, Yanzhong TIAN, Peng ZHANG. Exploration on the Unified Model for Fatigue Properties Prediction of Metallic Materials[J]. 金属学报, 2018, 54(11): 1693-1704.
[11] Yu PAN, Diantao ZHANG, Yuning TAN, Zhen LI, Yufeng ZHENG, Li LI. Mechanical Properties of Biomedical Ultrafine Grained Mg-3Sn-0.5Mn Alloy Processed by Equal-Channel Angular Pressing[J]. 金属学报, 2017, 53(10): 1357-1363.
[12] Li WANG,Zhongjiao ZHOU,Shaohua ZHANG,Xiangdong JIANG,Langhong LOU,Jian ZHANG. CRACK INITIATION AND PROPAGATION AROUND HOLES OF Ni-BASED SINGLE CRYSTAL SUPERALLOY DURING THERMAL FATIGUE CYCLE[J]. 金属学报, 2015, 51(10): 1273-1278.
[13] TAO Nairong, LU Ke. PREPARATION TECHNIQUES FOR NANO-STRUCTURED METALLIC MATERIALS VIA PLASTIC DEFORMATION[J]. 金属学报, 2014, 50(2): 141-147.
[14] YU Long, SONG Xiping, ZHANG Min, LI Hongliang, JIAO Zehui, YU Huichen. CRACK INITIATION AND PROPAGATION OF HIGH Nb-CONTAINING TiAl ALLOY IN FATIGUE-CREEP INTERACTION[J]. 金属学报, 2014, 50(10): 1253-1259.
[15] WANG Zhiying WANG Jianqiu HAN En–hou KE Wei YAN Maocheng ZHANG Junwei LIU Chuwei . STRESS CORROSION CRACK INITIATION BEHAVIOR FOR THE X70 PIPELINE STEEL BENEATH A DISBONDED COATING[J]. 金属学报, 2012, 48(10): 1267-1272.
No Suggested Reading articles found!