Metallic and covalent materials are important structural materials. Traditional strategies for strengthening materials compromise their ductility and toughness. Recent experimental results show that twinning can simultaneously improve the strength (hardness) and toughness of copper and diamond; as the inverse relationship between the strength and toughness of materials is broken, this has become a hot research topic. By studying the strengthening mechanism of nanotwinned copper and diamond, methods to simultaneously improve strength and toughness may be found. Herein, this paper presents a comprehensive overview of the recent developments in the experimental and theoretical studies of nanotwinned metals and covalent materials. The microstructures, fabrication methods, and mechanical properties of nanotwinned metals and covalent materials are summarized. Further, the strengthening mechanism of nanotwinned metals and the hardening mechanism of covalent materials are introduced. Finally, the research trend on the mechanical behavior of nanotwinned materials is discussed in detail.
Fig.1 Schematic of the shape changes of the spherical grain above the twin boundary, and illustration of twinning elements (K1—twinning plane, K2—conjugate twinning plane before twinning, —conjugate twinning plane after twinning, η1—twinning direction, η2—conjugate twinning direction, s—magnitude of shear)
Fig.2 Schematics of twin structures of some typical crystals
Fig.3 Schematic of coherent twin boundary (CTB) and incoherent twin boundary (ITB) in twinned materials
Fig.4 Yield strength and ductility of nanotwinned copper[18]
Fig.5 Mechanical properties of nanotwinned covalent materials
Fig.6 Schematics of a model setup and slip modes in nanotwinned copper [49]
Fig.7 Twin-thickness-dependent critical resolved shear stress (CRSS) for different slip modes in nanotwinned Cu[49]
Fig.8 Calculated twin-thickness-dependent yield str-ength for nt-Cu compared with experimental results[49]
Fig.9 Schematics of the nt-diamond microstructure and slip modes[51]
Fig.10 CRSSs for dislocation motion for the three different slip modes in nanotwinned diamond[51]
Fig.11 Calculated hardness compared to experimental data for nt-diamond as a function of twin thickness [51]
Fig.12 Compressive strength as a function of grain size and twin thickness for nc-diamond and nt-diamond samples at 300 K under displacement-controlled compression with Tersoff potential[48]
Fig.13 Diagram of nc-diamond and nc-Cu (nt-diamond and nt-Cu) strength as a function of grain size (twin thickness) (The black line summarizes the main feature of nc-diamond and nc-Cu where a turn from the Hall-Petch effect to reverse Hall-Petch effect (RHPE) occurs at d = dc; the brown patterned area indicates RHPE in nt-Cu with λ < λc (the Hall-Petch effect dominates with λ > λc); the cyan dash line and patterned area emphasize the continuous strengthening of nt-diamond with decreasing λ; dc—critical grain size, λc—critical twin thickness)[48]
1
Lu K. The future of metals [J]. Science, 2010, 328: 319
2
Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10: 817
3
Sun L G, He X Q, Lu J. Nanotwinned and hierarchical nanotwinned metals: A review of experimental, computational and theoretical efforts [J]. npj Comput. Mater., 2018, 4: 6
4
Chen A Y, Li D F, Zhang J B, et al. Make nanostructured metal exceptionally tough by introducing non-localized fracture behaviors [J]. Scr. Mater., 2008, 59: 579
5
Fang T H, Li W L, Tao N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper [J]. Science, 2011, 331: 1587
6
Lu K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345: 1455
7
Wu X L, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure [J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 7197
8
Wang T M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
9
Zhu L L, Lu J. Modelling the plastic deformation of nanostructured metals with bimodal grain size distribution [J]. Int. J. Plast., 2012, 30-31: 166
10
Zhu L L, Shi S Q, Lu K, et al. A statistical model for predicting the mechanical properties of nanostructured metals with bimodal grain size distribution [J]. Acta Mater., 2012, 60: 5762
11
Zhu L L, Guo X, Ruan H H, et al. Prediction of mechanical properties in bimodal nanotwinned metals with a composite structure [J]. Compos. Sci. Technol., 2016, 123: 222
12
Hall E O. Yield Point Phenomena in Metals and Alloys [M]. New York: Plenum Press, 1970: 37
13
Horita Z, Ohashi K, Fujita T, et al. Achieving high strength and high ductility in precipitation-hardened alloys [J]. Adv. Mater., 2005, 17: 1599
14
Zhao Y H, Zhu Y T, Lavernia E J. Strategies for improving tensile ductility of bulk nanostructured materials [J]. Adv. Eng. Mater., 2010, 12: 769
15
Jiao Z B, Luan J H, Zhang Z W, et al. Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels [J]. Acta Mater., 2013, 61: 5996
16
Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324: 349
17
Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304: 422
18
Lu L, Chen X, Huang X X, et al. Revealing the maximum strength in nanotwinned copper [J]. Science, 2009, 323: 607
19
Wei Y J, Li Y Q, Zhu L C, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins [J]. Nat. Commun., 2014, 5: 3580
20
Zhang Z J, Sheng H W, Wang Z J, et al. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy [J]. Nat. Commun., 2017, 8: 14390
21
Kou H N, Lu J, Li Y. High-strength and high-ductility nanostructured and amorphous metallic materials [J]. Adv. Mater., 2014, 26: 5518
22
Wu G, Chan K C, Zhu L L, et al. Dual-phase nanostructuring as a route to high-strength magnesium alloys [J]. Nature, 2017, 545: 80
23
Mahajan S, Williams D F. Deformation twinning in metals and alloys [J]. Int. Metall. Rev., 1973, 18: 43
24
Yoo M H, Lee J K. Deformation twinning in h.c.p. metals and alloys [J]. Philos. Mag., 1991, 63A: 987
25
Christian J W, Mahajan S. Deformation twinning [J]. Prog. Mater. Sci., 1995, 39: 1
26
Zhu Y T, Liao X Z, Wu X L. Deformation twinning in bulk nanocrystalline metals: Experimental observations [J]. JOM, 2008, 60(9): 60
27
Zhu Y T, Liao X Z, Wu X L. Deformation twinning in nanocrystalline materials [J]. Prog. Mater. Sci., 2012, 57: 1
28
Huang Q, Yu D L, Xu B, et al. Nanotwinned diamond with unprecedented hardness and stability [J]. Nature, 2014, 510: 250
29
Xu B, Tian Y J. Diamond gets harder, tougher, and more deformable [J]. Matter Radiat. Extrem., 2020, 5: 068103
30
Yue Y H, Gao Y F, Hu W T, et al. Hierarchically structured diamond composite with exceptional toughness [J]. Nature, 2020, 582: 370
31
Anderoglu O, Misra A, Wang H, et al. Thermal stability of sputtered Cu films with nanoscale growth twins [J]. J. Appl. Phys., 2008, 103: 094322
32
Bufford D, Wang H Y, Zhang X H. Thermal stability of twins and strengthening mechanisms in differently oriented epitaxial nanotwinned Ag films [J]. J. Mater. Res., 2013, 28: 1729
33
Bufford D, Wang H, Zhang X. High strength, epitaxial nanotwinned Ag films [J]. Acta Mater., 2011, 59: 93
34
Tian Y J, Xu B, Yu D L, et al. Ultrahard nanotwinned cubic boron nitride [J]. Nature, 2013, 493: 385
35
Hall E O. The deformation and ageing of mild steel: III Discussion of results [J]. Proc. Phys. Soc., 1951, 64B: 747
36
Petch N J. The cleavage strength of polycrystals [J]. J. Iron Steel Inst., 1953, 174: 25
37
Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1: 16019
38
Hu J, Shi Y N, Sauvage X, et al. Grain boundary stability governs hardening and softening in extremely fine nanograined metals [J]. Science, 2017, 355: 1292
39
Li X Y, Wei Y J, Lu L, et al. Dislocation nucleation governed softening and maximum strength in nano-twinned metals [J]. Nature, 2010, 464: 877
40
Wang J, Li N, Anderoglu O, et al. Detwinning mechanisms for growth twins in face-centered cubic metals [J]. Acta Mater., 2010, 58: 2262
41
Schiøtz J, Di Tolla F D, Jacobsen K W. Softening of nanocrystalline metals at very small grain sizes [J]. Nature, 1998, 391: 561
42
Yip S. The strongest size [J]. Nature, 1998, 391: 532
43
Van Swygenhoven H. Grain boundaries and dislocations [J]. Science, 2002, 296: 66
44
Schiøtz J, Vegge T, Di Tolla F D, et al. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals [J]. Phys. Rev., 1999, 60B: 11971
45
Schiøtz J, Jacobsen K W. A maximum in the strength of nanocrystalline copper [J]. Science, 2003, 301: 1357
46
Dubrovinskaia N, Solozhenko V L, Miyajima N, et al. Superhard nanocomposite of dense polymorphs of boron nitride: Noncarbon material has reached diamond hardness [J]. Appl. Phys. Lett., 2007, 90: 101912
47
Sumiya H, Irifune T. Hardness and deformation microstructures of nano-polycrystalline diamonds synthesized from various carbons under high pressure and high temperature [J]. J. Mater. Res., 2007, 22: 2345
48
Wen B, Xu B, Wang Y B, et al. Continuous strengthening in nanotwinned diamond [J]. npj Comput. Mater., 2019, 5: 117
49
Xiao J W, Yang H Z, Liu H X, et al. Strengthening-softening transition in yield strength of nanotwinned Cu [J]. Scr. Mater., 2019, 162: 372
50
Hu W T, Wen B, Huang Q, et al. Role of plastic deformation in tailoring ultrafine microstructure in nanotwinned diamond for enhanced hardness [J]. Sci. China Mater., 2017, 60: 178
51
Xiao J W, Yang H Z, Wu X Z, et al. Dislocation behaviors in nanotwinned diamond [J]. Sci. Adv., 2018, 4: eaat8195
52
Bilby B A, Crocker A G. The theory of the crystallography of deformation twinning [J]. Proc. Roy. Soc., 1965, 288A: 240
53
Jaswon M A, Dove D B. The prediction of twinning modes in metal crystals [J]. Acta Cryst., 1956, 10: 14
54
Jaswon M A, Dove D B. The crystallography of deformation twinning [J]. Acta Cryst., 1960, 13: 232
55
Kiho H. The crystallographic aspect of the mechanical twinning in Ti and α-U [J]. J. Phys. Soc. Jpn., 1958, 13: 269
56
Yu Y N. Fundamentals of Materials Science [M]. 2nd Ed., Beijing: Higher Education Press, 2012: 570
余永宁. 材料科学基础 [M]. 第2版, 北京:高等教育出版社, 2012: 570
57
Hall E. Twinning and Diffusionless Transformations in Metals [M]. London: Butterworths Scientific Publications, 1954: 53
58
Christian J W. The Theory of Transformations in Metals and Alloys: An Advanced Textbook in Physical Metallurgy [M]. 3rd Ed., Oxford: Pergamon, 2002: 859
59
Christian J W, Laughlin D E. Overview no.67 The deformation twinning of superlattice structures derived from disordered B.C.C. or F.C.C. solid solutions [J]. Acta Metall., 1988, 36: 1617
60
Bevis M, Crocker A G. Twinning shears in lattices [J]. Proc. Roy. Soc., 1968, 304A: 123
61
Bevis M, Crocker A G. Twinning modes in lattices [J]. Proc. Roy. Soc., 1969, 313A: 509
62
Jaswon M A, Dove D B. Twinning properties of lattice planes [J]. Acta Cryst., 1956, 9: 621
63
Churchman A T, Geach G A, Winton J. Deformation twinning in materials of the A4 (diamond) crystal structure [J]. Proc. Roy. Soc., 1956, 238A: 194
64
Chen T P, Chen F R, Chuang Y C, et al. Study of twins in GaAs, GaP and InAs crystals [J]. J. Cryst. Growth, 1992, 118: 109
65
Tang C Y, Li F H, Wang R, et al. Atomic configurations of dislocation core and twin boundaries in 3C-SiC studied by high-resolution electron microscopy [J]. Phys. Rev., 2007, 75B: 184103
66
Huang C, Yang B, Peng X H, et al. Plastic deformation and hardening mechanisms of a nano-twinned cubic boron nitride ceramic [J]. ACS Appl. Mater. Interfaces, 2020, 12: 50161
67
Shiga K, Maeda K, Morito H, et al. Effect of twin boundary formation on the growth rate of the GaSb{111} plane [J]. Acta Mater., 2020, 185: 453
68
Beyerlein I J, Zhang X H, Misra A. Growth twins and deformation twins in metals [J]. Annu. Rev. Mater. Res., 2014, 44: 329
69
Lu L, Lu K. Metallic materials with nano-scale twins [J]. Acta Metall. Sin., 2010, 46: 1422
卢 磊, 卢 柯. 纳米孪晶金属材料 [J]. 金属学报, 2010, 46: 1422
70
Lu L, You Z S. Plastic deformation mechanisms in nanotwinned metals [J]. Acta Metall. Sin., 2014, 50: 129
卢 磊, 尤泽升. 纳米孪晶金属塑性变形机制 [J]. 金属学报, 2014, 50: 129
71
Cheng Z. Mechanical properties and deformation mechanisms of gradient nanotwinned Cu [D]. Hefei: University of Science and Technology of China, 2019
程 钊. 梯度纳米孪晶Cu的力学性能和变形机制研究 [D]. 合肥: 中国科学技术大学, 2019
72
Zhang Y Z. Mechanical properties and plastic deformation mechanism of nano-twinned 316L austenitic stainless steel [D]. Hefei: University of Science and Technology of China, 2019
Zhang Z Y. Microstructures and properties of nanotwinned CuCrZr alloy strengthened by precipitates [D]. Hefei: University of Science and Technology of China, 2020
Meng G Z, Shao Y W, Zhang T, et al. Synthesis and corrosion property of pure Ni with a high density of nanoscale twins [J]. Electrochim. Acta, 2008, 53: 5923
75
Wu B Y C, Schuh C A, Ferreira P J. Nanostructured Ni-Co alloys with tailorable grain size and twin density [J]. Metall. Mater. Trans., 2005, 36A: 1927
76
Nakamoto Y, Yuasa M, Chen Y Q, et al. Mechanical properties of a nanocrystalline Co-Cu alloy with a high-density fine nanoscale la-mellar structure [J]. Scr. Mater., 2008, 58: 731
77
Chen X H, Lu L, Lu K. Electrical resistivity of ultrafine-grained copper with nanoscale growth twins [J]. J. Appl. Phys., 2007, 102: 083708
78
You Z S, Lu L, Lu K. Tensile behavior of columnar grained Cu with preferentially oriented nanoscale twins [J]. Acta Mater., 2011, 59: 6927
79
Kelly P J, Arnell R D. Magnetron sputtering: A review of recent developments and applications [J]. Vacuum, 2000, 56: 159
80
Zhang X H, Wang H, Chen X H, et al. High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins [J]. Appl. Phys. Lett., 2006, 88: 173116
81
Dahlgren S D. Columnar grains and twins in high-purity sputter-deposited copper [J]. J. Vac. Sci. Technol., 1974, 11: 832
82
Dahlgren S D, Nicholson W L, Merz M D, et al. Microstructural analysis and tensile properties of thick copper and nickel sputter deposits [J]. Thin Solid Films, 1977, 40: 345
83
Zhang X, Misra A, Wang H, et al. Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning [J]. Acta Mater., 2004, 52: 995
84
Zhang X, Misra A. Superior thermal stability of coherent twin boundaries in nanotwinned metals [J]. Scr. Mater., 2012, 66: 860
85
Tao N R, Lu K. Dynamic plastic deformation (DPD): A novel technique for synthesizing bulk nanostructured metals [J]. J. Mater. Sci. Technol., 2007, 23: 771
86
Li Y S, Tao N R, Lu K. Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures [J]. Acta Mater., 2008, 56: 230
87
Li Y S, Zhang Y, Tao N R, et al. Effect of the Zener-Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation [J]. Acta Mater., 2009, 57: 761
88
Xiao G H, Tao N R, Lu K. Effects of strain, strain rate and temperature on deformation twinning in a Cu-Zn alloy [J]. Scr. Mater., 2008, 59: 975
89
Zhang Y, Tao N R, Lu K. Effect of stacking-fault energy on defor-mation twin thickness in Cu-Al alloys [J]. Scr. Mater., 2009, 60: 211
90
Yan F K, Liu G Z, Tao N R, et al. Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles [J]. Acta Mater., 2012, 60: 1059
91
Zhang B B, Yan F K, Zhao M J, et al. Combined strengthening from nanotwins and nanoprecipitates in an iron-based superalloy [J]. Acta Mater., 2018, 151: 310
92
Yi H Y, Yan F K, Tao N R, et al. Comparison of strength-ductility combinations between nanotwinned austenite and martensite-austenite stainless steels [J]. Mater. Sci. Eng., 2015, A647: 152
93
Tao Q, Wei X, Lian M, et al. Nanotwinned diamond synthesized from multicore carbon onion [J]. Carbon, 2017, 120: 405
94
Feng X, Xiao J W, Wen B, et al. Temperature-dependent hardness of zinc-blende structured covalent materials [J]. Sci. China Mater., 2021, 64: 2280
95
Zhao Z S, Xu B, Tian Y J. Recent advances in superhard materials [J]. Annu. Rev. Mater. Res., 2016, 46: 383
96
Xiao J W. Investigation on mechanical properties of nanotwinned diamond and nanotwinned copper [D]. Qinhuangdao: Yanshan University, 2018
肖建伟. 纳米孪晶金刚石和纳米孪晶铜的力学性质研究 [D]. 秦皇岛: 燕山大学, 2018
97
Hartley C S, Blachon D L A. Reactions of slip dislocations at coherent twin boundaries in face-centered-cubic metals [J]. J. Appl. Phys., 1978, 49: 4788
98
Zhu T, Gao H J. Plastic deformation mechanism in nanotwinned metals: An insight from molecular dynamics and mechanistic modeling [J]. Scr. Mater., 2012, 66: 843
99
Zhu T, Li J, Samanta A, et al. Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals [J]. Proc. Natl. Acad. Sci. USA, 2007, 104: 3031
100
Misra A, Hirth J P, Hoagland R G. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites [J]. Acta Mater., 2005, 53: 4817
101
Gu P, Dao M, Suresh S. Analysis of size-dependent slip transfer and inter-twin flow stress in a nanotwinned fcc metal [J]. Acta Mater., 2014, 67: 409
102
Zhu Y T, Wu X L, Liao X Z, et al. Dislocation-twin interactions in nanocrystalline fcc metals [J]. Acta Mater., 2011, 59: 812
103
Dao M, Lu L, Shen Y F, et al. Strength, strain-rate sensitivity and ductility of copper with nanoscale twins [J]. Acta Mater., 2006, 54: 5421
104
Ovid’ko I A, Sheinerman A G. Plastic deformation through de-twinning mediated by incoherent twin boundaries in nanotwinned metallic alloys [J]. Rev. Adv. Mater. Sci., 2016, 47: 1
105
Barnett M R, Keshavarz Z, Ma X. A semianalytical sachs model for the flow stress of a magnesium alloy [J]. Metall. Mater. Trans., 2006, 37A: 2283
106
Blumenau A T, Heggie M I, Fall C J, et al. Dislocations in diamond: Core structures and energies [J]. Phys. Rev., 2002, 65B: 205205
107
Blumenau A T, Jones R, Frauenheim T, et al. Dislocations in diamond: Dissociation into partials and their glide motion [J]. Phys. Rev., 2003, 68B: 014115
108
Masuya S, Hanada K, Oshima T, et al. Formation of stacking fault and dislocation behavior during the high-temperature annealing of single-crystal HPHT diamond [J]. Diam. Relat. Mater., 2017, 75: 155
109
Cahoon J R, Broughton W H, Kutzak A R. The determination of yield strength from hardness measurements [J]. Metall. Trans., 1971, 2: 1979
110
Bringa E M, Caro A, Wang Y M, et al. Ultrahigh strength in nanocrystalline materials under shock loading [J]. Science, 2005, 309: 1838