Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (6): 704-710    DOI:
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURE REFINEMENT OF EUTECTOID STEEL BASED ON DIVORCED EUTECTOID TRANSFORMATION
LI Longfei1; LI Wei1; SUN Zuqing1; YANG Wangyue2
1.State Key Laboratory for Advanced Metals and Materials; University of Science \& Technology Beijing; Beijing 100083
2.Materials Science and Engineering School; University of Science \& Technology Beijing; Beijing 100083
Cite this article: 

LI Longfei LI Wei SUN Zuqing YANG Wangyue. MICROSTRUCTURE REFINEMENT OF EUTECTOID STEEL BASED ON DIVORCED EUTECTOID TRANSFORMATION. Acta Metall Sin, 2009, 45(6): 704-710.

Download:  PDF(11079KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

For high carbon steels, the (α+θ) microduplex structure consisting of ultrafine ferrite matrix and dispersed cementite particles demonstrates a good balance between strength and ductility as compared with a normal microstructure, i.e., lamellar pearlite in eutectoid steel or lamellar pearlite plus pro--eutectoid cementite in hypereutectoid steel. The divorced eutectoid transformation (DET) has been confirmed to be very effective in ultrahigh carbon steels for the production of the (α+θ) microduplex structure. In ultrahigh carbon steels, DET takes place during slow cooling of a mixing microstructure of austenite plus dispersed undissolved cementite particles formed by the intercritical annealing within the (γ+θ) two phase range. Due to the absence of the (γ+θ) two phase range, DET is difficult to take place in eutectoid steel. In the present work, DET was realized in eutectoid steel by a special thermal--mechanical treatment, which involved two--stage hot deformation in the temperature ranges of A1 to Ar1 and A1 to Ac1 and subsequent slow cooling. The microstructure evolution during such treatment was studied by hot uniaxial compression tests using a
Gleeble 1500 hot simulation test machine in combination with SEM and EBSD. The results indicate that during hot deformation in the
temperature range of A1 to Ac1 after hot deformation of undercooled austenite in the temperature range of A1 to Ar1 , the re--austenization could be controlled by the applied strain, leading to the formation of the mixing microstructure of austenite plus undissolved cementite particles at certain conditions. During subsequent slow cooling, DET took place, resulting in the formation of an ultrafine (α+θ) microduplex structure with α--Fe
grains less than 3 μm and θ--Fe3C particles less than 0.5 μm.

Key words:  eutectoid steel      divorced eutectoid transformation      microstructure refinement      austenite      strain     
Received:  05 December 2008     
ZTFLH: 

TG142.1

 

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I6/704

[1] Oyama T, Sherby O D, Wadsworth J, Walser B. Scr Metall , 1984; 18: 799
[2] Sherby O D. ISIJ Int, 1999; 39: 637
[3] Sherby O D,Walser B, Young C M, Cady E M. Scr Metall, 1975; 9: 569
[4] Walser B, Sherby O D. Metall Trans, 1979; 10A: 1461
[5] Wadsworth J, Lin J H, Sherby O D. Met Technol, 1981; 8: 190
[6] Sherby O D, Oyama T, Kum D W, Walser B, Wadsworth J. J Met, 1985; 37(6): 50
[7] Syn C K, Lesuer D R, Sherby O D. Metall Mater Trans, 1994; 25A: 1481
[8] Langford G. Metall Trans, 1977; 8A: 861
[9] Fu W, Furuhara T, Maki T. ISIJ Int, 2004; 44: 171
[10] Furuhara T, Mizoguchi T, Maki T. ISIJ Int, 2005; 45: 392
[11] Lupton D F, Warrington D H. Met Sci J, 1972; 6: 200
[12] Kaspar R, Kapellner W, Lang C. Steel Res, 1988; 59: 492
[13] Huang Q S, Li L F, Yang W Y, Sun Z Q. Acta Metall Sin, 2007; 43: 724
(黄青松, 李龙飞, 杨王玥, 孙祖庆. 金属学报, 2007; 43: 724)
[14] Li L F, Yang W Y, Sun Z Q. Metall Mater Trans, 2007; 39A: 624
[15] Chen W, Li L F, Yang W Y, Sun Z Q. Acta Metall Sin, 2009; 45: 151
(陈 \ \ 伟, 李龙飞, 杨王玥, 孙祖庆. 金属学报, 2009; 45: 151)
[16] Xu P G, Tomota Y. Acta Metall Sin, 2006; 42: 681
(徐平光, 友田阳. 金属学报, 2006; 42: 681)
[17] Honda K, Saito S. J Iron Steel Inst, 1920; 102: 261
[18] Whiteley J H. J Iron Steel Inst, 1922; 105: 339
[19] Payson P, Hodapp W L, Leeder J. Trans ASM, 1940; 28:306
[20] Grossmann M A, Bain E C. Principles of Heat Treatment. 5th ed., Ohio: American Society for Metals, 1964: 201
[21] Cullen O E. Met Prog, 1953; 64: 79
[22] Parusov V V, Dolzhenkov I I, Sukhomlin V I. Met Sci Heat Treatment, 1985; 27: 402
[23] Verhoeven J D, Gibson E D. Metall Mater Trans, 1998; 29A: 1181
[24] Sun Z Q, Yang W Y, Qi J J, Hu A M. Mater Sci Eng, 2002; A334: 201
[25] Yang W Y, Qi J J, Sun Z Q, Yang P. Acta Metall Sin, 2004; 40: 135
(杨王玥, 齐俊杰, 孙祖庆, 杨平. 金属学报, 2004; 40: 135)
[26] Tsuzaki K, Sato E, Furimoto S, Furuhara T, Maki T. ScrMater, 1999; 40: 675

[1] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[2] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[3] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[4] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[5] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[6] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[7] WANG Nan, CHEN Yongnan, ZHAO Qinyang, WU Gang, ZHANG Zhen, LUO Jinheng. Effect of Strain Rate on the Strain Partitioning Behavior of Ferrite/Bainite in X80 Pipeline Steel[J]. 金属学报, 2023, 59(10): 1299-1310.
[8] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
[9] LIU Xuxi, LIU Wenbo, LI Boyan, HE Xinfu, YANG Zhaoxi, YUN Di. Calculation of Critical Nucleus Size and Minimum Energy Path of Cu-Riched Precipitates During Radiation in Fe-Cu Alloy Using String Method[J]. 金属学报, 2022, 58(7): 943-955.
[10] REN Shihao, LIU Yongli, MENG Fanshun, QI Yang. Strain-Engineered Semiconductor to Semimetallic Transition and Its Mechanism in Bi(111) Film[J]. 金属学报, 2022, 58(7): 911-920.
[11] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[12] GAO Yubi, DING Yutian, LI Haifeng, DONG Hongbiao, ZHANG Ruiyao, LI Jun, LUO Quanshun. Effect of Deformation Rate on the Elastic-Plastic Deformation Behavior of GH3625 Alloy[J]. 金属学报, 2022, 58(5): 695-708.
[13] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
[14] SHEN Guohui, HU Bin, YANG Zhanbing, LUO Haiwen. Influence of Tempering Temperature on Mechanical Properties and Microstructures of High-Al-Contained Medium Mn Steel Having δ-Ferrite[J]. 金属学报, 2022, 58(2): 165-174.
[15] CHEN Wei, CHEN Hongcan, WANG Chenchong, XU Wei, LUO Qun, LI Qian, CHOU Kuochih. Effect of Dilatational Strain Energy of Fe-C-Ni System on Martensitic Transformation[J]. 金属学报, 2022, 58(2): 175-183.
No Suggested Reading articles found!