Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (6): 663-672    DOI:
论文 Current Issue | Archive | Adv Search |
FABRICATION AND CRYSTALLINITY OF Bi2Sr2CaCu2O8+δ THIN FILMS BY MOLECULAR BEAM EPITAXY
ZHANG Bingsen 1; LI Maolin 1; WANG Jingjing 1; SUN Benzhe 1; QI Yang 1; 2
1. Institute of Materials Physics and Chemistry; School of Sciences;Northeastern University; Shenyang 110004
2. Key Laboratory for Anisotropy and Texture of Materials; Ministry of Education; Northeastern University; Shenyang 110004
Cite this article: 

ZHANG Bingsen LI Maolin WANG Jingjing SUN Benzhe QI Yang . FABRICATION AND CRYSTALLINITY OF Bi2Sr2CaCu2O8+δ THIN FILMS BY MOLECULAR BEAM EPITAXY. Acta Metall Sin, 2009, 45(6): 663-672.

Download:  PDF(6232KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In the research field of Bi--based superconductor, the wire, tape and single crystal have been extensively used, but the application of Bi--based thin films is limited due to the appearances of intergrowth and impurity phases. Therefore, various fabrication methods have been adopted to improve the quality of Bi--based thin films. In these methods, molecular beam epitaxy (MBE) is recognized as one of the most adept thin film growth techniques for obtaining single phase, good surface morphology and low concentration of defects. In order to find the optimal preparation conditions, XRD, EDS, SEM, AFM and BiO--(Sr+Ca)O--CuO phase diagram were used in studying the effects of composition, substrate temperature and ozone partial pressure on the formation of Bi2Sr2CaCu2O8+δ(Bi--2212) thin films in the present work. At the same time, the influences of growth rate, mismatch and buffer layer on the quality of thin films have been analyzed in details. Results indicate that the component range (atomic fraction) forming Bi--2212 single phase is 26.3%---32.4% for Bi--composition, 37.4%---46.5% for (Sr+Ca)--composition and 24.8%---32.6% for Cu--composition. Furthermore, the c--axis epitaxial Bi--2212 thin film with high quality can be obtained on MgO(100) substrate when the substrate temperature and ozone partial pressure are 720℃ and 1.3×10-3 Pa, respectively. The crystalline quality, surface morphology and electrical property of Bi--2212 thin films have been improved by the alteration of substrates, the adjustment of growth rates and the insertion of Bi2Sr2CuO6+δ buffer layers with different thickness.

Key words:  Bi2Sr2CaCu2O8+δthin film      molecular beam epitaxy      substrate temperature      ozone partial pressure      growth rate      mismatch     
Received:  12 December 2008     
ZTFLH: 

TN405.984

 
Fund: 

Supported by National Natural Science Foundation of China (No. 50572013)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I6/663

[1] Zhang J S, Kang W. Supercond Economy, 2004; (7): 65
(张劲松, 康伟. 超导经济, 2004; (7): 65)
[2] Murakami H, Kiwa T, Tonouchi M, Yasuda T. Physica, 2003; 388–389C: 479
[3] Kikuchi M, Kato T, Ohkura K, Ayai N, Fujikami J, Fujino K, Kobayashi S, Ueno E, Yamazaki K, Yamade S, Hayashi K, Sato K, Nagai T, Matsui Y. Physica, 2006; 445–448C: 717
[4] Latyshev Yu I, Orlov A P, Nikitina A M, Monceau P, Klemm R A. Phys Rev, 2004; 70B: 094517–1
[5] Saini N L, Lanzara A, Bianconi A, Oyanagi H. Phys Rev, 1998; 58B: 11768
[6] Tu J J, Homes C C, Gu G D, Basov D N, Strongin M. Phys Rev, 2002; 66B: 144514–1
[7] Ohkubo M, Geerk J, Linker G, Meyer O. Appl Phys Lett, 1995; 67: 2043
[8] Alami H El, Deville Cavellin C. J Cryst Growth, 2005; 277: 170
[9] Qi Y, Sakai K, Murakami H, Ito T. Appl Surf Sci, 2001; 169–170: 335
[10] Lowndes D H, Geohegan D B, Puretzky A A, Norton D P, Rouleau C M. Science, 1996; 273: 898
[11] Migita S, Sakai K, Ota H, Mori Z, Aoki R. Thin Solid Films, 1996; 281–282: 510
[12] Ye M, Zhang Y Z, de Marneffe J F, Delplancke–Ogletree M P, Deltour R. Thin Solid Films, 2000; 377–378: 597
[13] Tambo T, Arakawa T, Shimizu A, Hori S, Tatsuyama C. Appl Surf Sci, 2000; 159–160: 161
[14] Alami H El, Rannou I, Deville Cavellin C. Physica, 2004; 406C: 131
[15] Salvato M, Salluzzo M, Di Luccio T, Attanasio C, Prischepa S L, Maritato L. Thin Solid Films, 1999; 353:227
[16] Kasai Y, Sakai S. Rev Sci Instrum, 1997; 68: 2850
[17] Tatani T, Qi Y, Migita S, Sakai K, Aoki R. Technol Rep Osaka Univ, 1996; 46(4): 27
[18] Zhang B S, Yu X M, Sun X G, Li M L, Zhang C B, Qi Y. Acta Metall Sin, 2008; 44: 647
(张炳森, 于晓明, 孙霞光, 李茂林, 张彩碚, 祁 阳. 金属学报. 2008; 44: 647)
[19] Zhang B S, Sun X G, Li M L, Yu X M, Zhang C B, Qi Y. Rare Met Mater Eng, 2008; 37(Suppl.4): 133
(张炳森, 孙霞光, 李茂林, 于晓明, 张彩碚, 祁 阳. 稀有金属材料与工程, 2008; 37(增刊4): 133
[20] Eckstein J N, Bozovic I, von Dessonneck K E, Schlom D G, Harris J S Jr, Baumann S M. Appl Phys Lett, 1990; 57:931
[21] Bozovic I, Eckstein J N, Virshup G F, Chaiken A, Wall M, Howell R, Fluss M. J Supercond, 1994; 7: 187
[22] Qi Y, Sakai K, Murakami H. J Low Temp Phys, 1999; 117: 669
[23] Bove P, Rogers D J, Hosseini Teherani F. J Cryst Growth, 2000; 220: 68
[24] Sato H, Naito M, Tsukada A, Karimoto S, Matsuda A. Physica, 2001; 362C: 186
[25] Mari˜no A, Ichikawa F, Rodriguez H, Rinderer L. Physica, 1997; 282–287C: 2277
[26] Lee K, Song I, Park G. J Appl Phys, 1993; 74: 1459
[27] Ishibashi T, Kawata T, Yufune S, Sato K. J Phys: Conf Ser, 2006; 43: 255
[28] Polyakov S N, Kov’ev E K, Kupriyanov M Yu, Pfuch A, Wiese A, Seidel P. Supercond Sci Technol, 1996; 9: 99

[1] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[2] Qiliang NAI,Jianxin DONG,Maicang ZHANG,Zhihao YAO. INFLUENCE OF MULTI-MICROSTRUCTURE INTERACTION ON FATIGUE CRACK GROWTH RATE OF GH4738 ALLOY[J]. 金属学报, 2016, 52(2): 151-160.
[3] GAO Ka, LI Shuangming, FU Hengzhi. MICROSTRUCTURE EVOLUTION AND ORIENTATION ANALYSIS OF HYPEREUTECTIC Al-Al2Cu ALLOY UNDER DIRECTIONAL SOLIDIFICATION[J]. 金属学报, 2014, 50(8): 962-970.
[4] ZHANG Litao,WANG Jianqiu. STRESS CORROSION CRACK PROPAGATION BEHAVIOR OF DOMESTIC FORGED NUCLEAR GRADE 316L STAINLESS STEEL IN HIGH TEMPERATURE AND HIGH PRESSURE WATER[J]. 金属学报, 2013, 49(8): 911-916.
[5] LI Shuangming, FU Hengzhi. THEORETICAL ANALYSIS OF AN ABRUPT INCREASE IN GROWTH RATE ON THE DIRECTIONALLY SOLIDIFIED MICROSTRUCTURES OF OFF—EUTECTIC ALLOYS[J]. 金属学报, 2013, 49(12): 1543-1548.
[6] YANG Bing ZHAO Yongxiang. INFLUENCE OF SURFACE ROLLING ON SHORT FATIGUE CRACK BEHAVIOR FOR LZ50 AXLE STEEL[J]. 金属学报, 2012, 48(8): 922-928.
[7] HU Benfu LIU Guoquan WU Kai TIAN Gaofeng. MORPHOLOGICAL INSTABILITY OF γ' PHASE IN NICKEL-BASED POWDER METALLURGY SUPERALLOYS[J]. 金属学报, 2012, 48(3): 257-263.
[8] CHANG Guowei JIN Guangcan CHEN Shuying LI Qingchun YUE Xudong. STUDY ON LATERAL GROWTH RATE OF PERITECTIC REACTION PRODUCTS[J]. 金属学报, 2011, 47(3): 380-384.
[9] WANG Youdao WU Erdong WANG Sucheng LI Wuhui. X-RAY DIFFRACTION ANALYSIS ON THE THICKNESS EFFECT OF γ/γ' LATTICE MISMATCHE IN NICKEL BASE SINGLE CRYSTAL SUPERALLOY DD10[J]. 金属学报, 2011, 47(11): 1418-1425.
[10] MA Yingjie LI Jinwei LEI Jiafeng TANG Zhenyun LIU Yuyin YANG Rui. INFLUENCES OF MICROSTRUCTURE ON FATIGUE CRACK PROPAGATING PATH AND CRACK GROWTH RATES IN TC4ELI ALLOY[J]. 金属学报, 2010, 46(9): 1086-1092.
[11] QUAN Qiongrui LI Shuangming FU Hengzhi. EFFECT OF AN ABRUPT GROWTH RATE ON PRIMARY Al2Cu PHASE IN DIRECTIONAL SOLIDIFICATION OF Al–40%Cu HYPEREUTECTIC ALLOY[J]. 金属学报, 2010, 46(4): 500-505.
[12] WANG Yi SUN Feng DONG Xianping ZHANG Lanting SHAN Aidang. THERMODYNAMIC STUDY ON EQUILIBRIUM PRECIPITATION PHASES IN A NOVEL Ni-Co BASE SUPERALLOY[J]. 金属学报, 2010, 46(3): 334-339.
[13] XIONG Ying CHEN Bingbing ZHENG Sanlong GAO Zengliang. STUDY ON FATIGUE CRACK GROWTH BEHAVIOR OF 16MnR STEEL UNDER DIFFERENT CONDITIONS[J]. 金属学报, 2009, 45(7): 849-855.
[14] ZHU Mingliang XUAN Fuzhen ZHU Kuilong WANG Guozhen JIA Tianyao. EFFECT OF HEAT TREATMENT ON FATIGUE BEHAVIOR OF 25Cr2NiMo1V STEEL[J]. 金属学报, 2009, 45(3): 320-325.
[15] HUANG Taiwen LIU Lin ZHANG Weiguo ZHANG Jun FU Hengzhi. INFLUENCE OF WITHDRAWING RATE TRANSITION ON THE PRIMARY DENDRITE ARM SPACING AND MICROSEGREGATION OF DIRECTIONALLY SOLIDIFIED SINGLE CRYSTAL SUPERALLOY DD3[J]. 金属学报, 2009, 45(10): 1225-1231.
No Suggested Reading articles found!