Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (3): 380-384    DOI: 10.3724/SP.J.1037.2010.00409
论文 Current Issue | Archive | Adv Search |
STUDY ON LATERAL GROWTH RATE OF PERITECTIC REACTION PRODUCTS
CHANG Guowei, JIN Guangcan, CHEN Shuying, LI Qingchun, YUE Xudong
School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001
Cite this article: 

CHANG Guowei JIN Guangcan CHEN Shuying LI Qingchun YUE Xudong. STUDY ON LATERAL GROWTH RATE OF PERITECTIC REACTION PRODUCTS. Acta Metall Sin, 2011, 47(3): 380-384.

Download:  PDF(805KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Aiming at the problem which the experimental results of lateral growth rates of austenite (γ–phase) in the peritectic reaction of Fe–C alloy is much larger than the calculation based on Bosze and Trivedi[2] models, solute distribution in front of the solid/liquid interface in the peritectic reaction was analyzed in detail in this article, and the expression of solute distribution while the cylindrical solid phase gew in melt was also put forward. On the basis of the growth rate formula for the coarse interface deduced by Jackson[9], the advisable epression was obtained for calculating ateral growth rate of the peritectic reaction products, and which was applied to the peritectic reaction progress of Fe–C nd Fe–Ni alloys, respectively. The results showed that the calculation lateral growth rates of the peritectic reaction products (γ–phase) were coincide with the experimental results made by Shibata et al[4] and Mcdonald et al[5] through the observation of the peritectic reaction of Fe–C and Fe–Ni alloys using a confocl scanning laser microscope (CSLM).
Key words:  peritectic rection      solidification process      crystal growth      growth rate     
Received:  16 August 2010     
ZTFLH: 

TG111.5

 
Fund: 

Supported by National Natural Science Foundation of China (No.50874060)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00409     OR     https://www.ams.org.cn/EN/Y2011/V47/I3/380

[1] Trivedi R. Acta Metall, 1970; 18: 287

[2] Bosze W P, Trivedi R. Metall Mater Trans, 1974; 5B: 511

[3] Fredriksson H, Nyl´en T. Met Sci, 1982; 16: 283

[4] Shibata H, Arai Y, Suzuki M, Emi T. Metall Mater Trans, 2000; 31B: 981

[5] Mcdonald N J, Sridhar S. Metall Mater Trans, 2003; 34A: 1931

[6] Arai Y, Emi T, Fredriksson H, Shibata H. Metall Mater Trans, 2005; 36A: 3065

[7] Kerr H W, Cisse J, Bolling G F. Acta Metall, 1974; 22: 677

[8] Hillert M. Solidification and Casting of Metals. London: The Metals Society, 1979: 81

[9] Jackson K A. Liquid Melts and Solidification. Cleveland: American Society Melts, 1958: 174

[10] Jackson K A. J Cryst Growth, 1968; 3–4: 507

[11] Mullins W W, Sekerka R F. J Appl Phys, 1964; 35: 444

[12] Langr J S, Muller–Krumbahaar H. Acta Metall, 1978; 26: 1681

[13] Trivedi R, Somboonsuk K. Acta Metall, 1985; 33: 1061

[14] Trivedi R, Kurz W. Acta Metall Mater, 1994; 42: 15

[15] Burton J A, Prim R C, Slichter W P. J Chem Phys, 1953; 21: 1987

[16] Coriell S R, Paker R L. J Appl Phys, 1965; 36: 632

[17] Jackson K A, Gilmer G H, Temkin D E, Weinberg J D, Beatty K M. J Cryst Growth, 1993; 128: 127

[18] Jackson K A, Gilmer G H, Temkin D E. Phys Rev Lett, 1995; 75: 2530

[19] Jackson K A, Gilmer G H, Temkin D E, Weinberg J D, Beatty K M. J Cryst Growth, 1996; 163: 461

[20] Beatty K M, Jackson K A. J Cryst Growth, 1997; 174: 28

[21] Jackson K A. J Cryst Growth, 1999; 198/199: 1

[22] Bentz D N, Betush W J, Jackson K A. J Cryst Growth, 2003; 250: 162

[23] Bentz D N, Betush W J, Jackson K A. J Cryst Growth, 2003; 250: 166

[24] Poirier D R, Geiger G H. Transport Phenomena in Materials Processing. Warrendale, PA: TMS, 1994: 450

[25] Kurz W, Fisher D J. Fundamentals of Solidification. Switzerland: Trans Tech Publications Ltd., 1998: 240

[26] Vandyoussefi M, Kerr H W, Kurz W. Acta Mtaer, 1997; 45: 4093

[27] Phelan D, Reid M, Dippenaar R. Metall Mater Trans, 2006; 37A: 985
[1] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[2] WANG Guiqin,WANG Qin,CHE Honglong,LI Yajun,LEI Mingkai. Effects of Silicon on the Microstructure and Propertiesof Cast Duplex Stainless Steel with Ultra-HighChromium and High Carbon[J]. 金属学报, 2020, 56(3): 278-290.
[3] Qiaomu LIU,Shunzhou HUANG,Fang LIU,Yan YANG,Hongqiang NAN,Dong ZHANG,Wenru SUN. Effect of Boron Content on Microstructure Evolution During Solidification and Mechanical Properties of K417G Alloy[J]. 金属学报, 2019, 55(6): 720-728.
[4] Qiliang NAI,Jianxin DONG,Maicang ZHANG,Zhihao YAO. INFLUENCE OF MULTI-MICROSTRUCTURE INTERACTION ON FATIGUE CRACK GROWTH RATE OF GH4738 ALLOY[J]. 金属学报, 2016, 52(2): 151-160.
[5] GAO Ka, LI Shuangming, FU Hengzhi. MICROSTRUCTURE EVOLUTION AND ORIENTATION ANALYSIS OF HYPEREUTECTIC Al-Al2Cu ALLOY UNDER DIRECTIONAL SOLIDIFICATION[J]. 金属学报, 2014, 50(8): 962-970.
[6] ZHANG Yuan, LI Xinzhong, LIU Guohuai, SU Yanqing, GUO Jingjie, FU Hengzhi. DEPENDENCE OF PRIMARY PHASE AND ITS GROWTH DIRECTION ON SOLIDIFICATION PROCESS IN DIRECTIONALLY SOLIDIFIED Ti-46Al-2Cr-2Nb ALLOY[J]. 金属学报, 2013, 49(9): 1061-1068.
[7] ZHANG Litao,WANG Jianqiu. STRESS CORROSION CRACK PROPAGATION BEHAVIOR OF DOMESTIC FORGED NUCLEAR GRADE 316L STAINLESS STEEL IN HIGH TEMPERATURE AND HIGH PRESSURE WATER[J]. 金属学报, 2013, 49(8): 911-916.
[8] LI Shuangming, FU Hengzhi. THEORETICAL ANALYSIS OF AN ABRUPT INCREASE IN GROWTH RATE ON THE DIRECTIONALLY SOLIDIFIED MICROSTRUCTURES OF OFF—EUTECTIC ALLOYS[J]. 金属学报, 2013, 49(12): 1543-1548.
[9] YANG Bing ZHAO Yongxiang. INFLUENCE OF SURFACE ROLLING ON SHORT FATIGUE CRACK BEHAVIOR FOR LZ50 AXLE STEEL[J]. 金属学报, 2012, 48(8): 922-928.
[10] MA Yingjie LI Jinwei LEI Jiafeng TANG Zhenyun LIU Yuyin YANG Rui. INFLUENCES OF MICROSTRUCTURE ON FATIGUE CRACK PROPAGATING PATH AND CRACK GROWTH RATES IN TC4ELI ALLOY[J]. 金属学报, 2010, 46(9): 1086-1092.
[11] QUAN Qiongrui LI Shuangming FU Hengzhi. EFFECT OF AN ABRUPT GROWTH RATE ON PRIMARY Al2Cu PHASE IN DIRECTIONAL SOLIDIFICATION OF Al–40%Cu HYPEREUTECTIC ALLOY[J]. 金属学报, 2010, 46(4): 500-505.
[12] XIONG Ying CHEN Bingbing ZHENG Sanlong GAO Zengliang. STUDY ON FATIGUE CRACK GROWTH BEHAVIOR OF 16MnR STEEL UNDER DIFFERENT CONDITIONS[J]. 金属学报, 2009, 45(7): 849-855.
[13] ZHANG Bingsen LI Maolin WANG Jingjing SUN Benzhe QI Yang . FABRICATION AND CRYSTALLINITY OF Bi2Sr2CaCu2O8+δ THIN FILMS BY MOLECULAR BEAM EPITAXY[J]. 金属学报, 2009, 45(6): 663-672.
[14] ZHU Mingliang XUAN Fuzhen ZHU Kuilong WANG Guozhen JIA Tianyao. EFFECT OF HEAT TREATMENT ON FATIGUE BEHAVIOR OF 25Cr2NiMo1V STEEL[J]. 金属学报, 2009, 45(3): 320-325.
[15] HUANG Taiwen LIU Lin ZHANG Weiguo ZHANG Jun FU Hengzhi. INFLUENCE OF WITHDRAWING RATE TRANSITION ON THE PRIMARY DENDRITE ARM SPACING AND MICROSEGREGATION OF DIRECTIONALLY SOLIDIFIED SINGLE CRYSTAL SUPERALLOY DD3[J]. 金属学报, 2009, 45(10): 1225-1231.
No Suggested Reading articles found!