Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (8): 922-928    DOI: 10.3724/SP.J.1037.2012.00169
论文 Current Issue | Archive | Adv Search |
INFLUENCE OF SURFACE ROLLING ON SHORT FATIGUE CRACK BEHAVIOR FOR LZ50 AXLE STEEL
YANG Bing, ZHAO Yongxiang
西南交通大学牵引动力国家重点实验室, 成都 610031
Cite this article: 

YANG Bing ZHAO Yongxiang. INFLUENCE OF SURFACE ROLLING ON SHORT FATIGUE CRACK BEHAVIOR FOR LZ50 AXLE STEEL. Acta Metall Sin, 2012, 48(8): 922-928.

Download:  PDF(2429KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Crack initiation, coalescence and propagation normally occupy more than 70% the fatigue life of most engineering structure in the whole fatigue damage process. Investigation on the influence of final machining methods, such as surface rolling, on short fatigue crack behavior for LZ50 axle is beneficial to the manufacture and maintenance of corresponding railway axles. After rolling, the surface hardness increased from 201.68 HV0.1 to 222.90 HV0.1. Much higher residual compressive stress was also engendered in surface and sub–surface by this machining method. Totally six smooth hourglass shaped specimens with surface rolling were tested by a replica technique. The characteristic two–stages behavior, that is, the micro–structural short crack (MSC) stage and the physical short crack (PSC) stage, during crack initiation and propagation was revealed. In MSC stage, the growth rate of dominant short crack for all specimens decelerated twice clearly due to different microstructural barriers. This behavior was related to the restraint of ferrite grain boundary firstly and then to the constraint of pearlite banded structure. While in PSC stage, the decelerating trend was no longer obvious with the increasing dominant crack size. With a given dominant crack size, the crack growth rates of surface rolled specimens were much slower than those of specimens without surface rolling. This difference could reach 1 order of magnitude in MSC stage. Meanwhile, the average fatigue life of the former was about 5.4 times longer than that of the latter. The effective short fatigue crack density of surface rolled specimens increased in MSC stage, then attained the peak value at the turning point between MSC stage and PSC stage, and finally decreased in PSC stage. At the same time, surface rolled specimens owned much less crack density than specimens without surface rolling during the whole fatigue process. Surface rolling can restrain the nucleation and connection of micro–cracks, improve the local microstructure conditions, push back the transition point between MSC and PSC stages, and thus improve the anti–fatigue performance of material. Finally, the reasonable assumed distributions for three kinds of characteristic parameters, i.e., dominant short crack size, fatigue life fraction and effective short crack density, were determined. In general, the dispersion of above data was high in initial stage and relatively low in later stage during crack initiation and propagation process.
Key words:  fatigue      short crack      surface rolling      growth rate      LZ50 axle steel     
Received:  01 April 2012     
ZTFLH: 

TG111,TG115

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.50575189 and 50821063), Fundamental Research Funds for the Central Universities (No.SWJTU11CX075), and Opening Project of State Key Laboratory of Traction Power, Southwest Jiaotong University (No.2011TPL T02)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00169     OR     https://www.ams.org.cn/EN/Y2012/V48/I8/922

[1] Liu E Z, Zheng Z, Tong J, Ning L K, Guan X R. Acta Metall Sin, 2010; 46: 708

(刘恩泽, 郑 志, 佟健, 宁礼奎, 管秀荣. 金属学报, 2010; 46: 708)

[2] Hu Y H, Zhang Z, Zhong Q P, Han B C. J Mech Strength, 2009; 31: 979

(胡燕慧, 张 峥, 钟群鹏, 韩邦成. 机械强度, 2009; 31: 979)

[3] Suresh S, translated by Wang Z G. Fatigue of Materials. 2nd Ed, Beijing: National Defense Industry Press, 1999: 387

(Suresh S著, 王中光译. 材料的疲劳. 第二版, 北京: 国防工业出版社, 1999: 387)

[4] Pearson S. Eng Fract Mech, 1975; 7: 235

[5] Maluf O, Milan M T, Spinelli D. J Mater Eng Perform, 2004; 13: 195

[6] Ueji R, Tsuji N, Minamino Y. Acta Mater, 2002; 50: 4177

[7] Mara N A, Sergueeva A V, Mara T D. Mater Sci Eng, 2007; A463: 238

[8] Jia G W, Hua L, Mao H J. J Mater Process Technol, 2007; 187–188: 562

[9] Ma B, Tieu A K, Lu C, Jiang Z. J Mater Process Technol, 2002; 125–126: 657

[10] Yang B, Zhao Y X. Adv Mater Res, 2012; 463: 85

[11] Zhao Y X, Gao Q, Wang J N. Acta Metall Sin, 2000; 36: 931

(赵永翔, 高庆, 王金诺. 金属学报, 2000; 36: 931)

[12] Zhao Y X, Gao Q, Wang J N. Acta Metall Sin, 2000; 36: 937

(赵永翔, 高庆, 王金诺. 金属学报, 2000; 36: 937)

[13] Zhao Y X, Yang B, Gao Q. Nucl Power Eng, 2003; 24: 127

(赵永翔, 杨冰, 高庆. 核动力工程, 2003; 24: 127)

[14] Zhao Y X, Yang B, Gao Q. Nucl Power Eng, 2005; 26:584

(赵永翔, 杨冰, 高庆. 核动力工程, 2005; 26: 584)

[15] Zhao Y X. PhD Thesis, Southwest Jiaotong University,Chengdu, 1998

(赵永翔. 西南交通大学博士学位论文, 成都, 1998)

[16] Zhao Y X, Gao Q, Wang J N. Fatigue Fract Eng Mater Struct, 1999; 22: 459

[17] Miller K J. Fatigue Fract Eng Mater Struct, 1987; 10: 75

[18] Miller K J. Fatigue Fract Eng Mater Struct, 1987; 10: 93

[19] Obrtl´?k K, Pol´ak J, H´ajek M, Vaˇsek A. Int J Fatigue, 1997; 19: 471

[20] Luo J, Bowen P. Int J Fatigue, 2004; 26: 113

[21] Ortiz J, Cisilino A P, Otegui J L. Fatigue Fract Eng Mater Struct, 2001; 24: 591

[22] Ding C F, Liu J Z, Wu X R. J Aeronaut Mater, 2005; 25(6): 11

(丁传富, 刘建中, 吴学仁. 航空材料学报, 2005; 25(6): 11)

[23] Zhao Y X, Gao Q, Wang J N. Fatigue Fract Eng Mater Struct, 1999; 22: 469

[24] Zhao Y X. J Mater Sci Technol, 2003; 19: 129

[25] Yang B, Zhao Y X. Int J Fatigue, 2012; 35: 71

[26] Yang B, Zhao Y X. Key Eng Mater, 2011; 474: 979

[27] Yang B, Zhao Y X. Adv Mater Res, 2010; 118: 75

[28] Zhao Y X, Sun Y F, Gao Q. J Mech Strength, 2001; 23: 102

(赵永翔, 孙亚芳, 高庆. 机械强度, 2001; 23: 102)
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[4] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[5] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[6] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[7] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[8] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[9] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[10] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[11] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[12] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[13] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
[14] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[15] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
No Suggested Reading articles found!