Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (6): 641-646    DOI:
论文 Current Issue | Archive | Adv Search |
EVOLUTIONS OF GRAIN ORIENTATION AND DISLOCATION BOUNDARY IN AA1050 ALUMINUM ALLOY DURING COLD ROLLING FROM LOW TO MEDIUM STRAINS
LIU Qing 1;2; YAO Zongyong 1; A. Godfrey 1; LIU Wei1
1. Department of Materials Science and Engineering; Tsinghua University; Beijing 100084
2. School of Materials Science and Engineering; Chongqing University; Chongqing 400044
Cite this article: 

LIU Qing; YAO Zongyong; A. Godfrey; LIU Wei. EVOLUTIONS OF GRAIN ORIENTATION AND DISLOCATION BOUNDARY IN AA1050 ALUMINUM ALLOY DURING COLD ROLLING FROM LOW TO MEDIUM STRAINS. Acta Metall Sin, 2009, 45(6): 641-646.

Download:  PDF(12328KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The dislocation boundary structure evolution in AA1050 aluminum alloy during cold rolling from low to medium strains was investigated using electron channeling contrast (ECC) imaging and the electron backscattered diffraction (EBSD) techniques. The results show that the grains are subdivided into a typical cell--block structure and there is a strong correlation between deformation microstructure and grain orientation. Based on the characterizations of grain subdivision and dislocation boundary structure, grains can be classified into three types: Type A---grains containing two sets of geometrically necessary boundaries (GNBs), Type B---grains containing one set of GNBs, and Type C---grains consisting of large dislocation cells structure. Most of grains with Copper, Brass and Goss orientations have Type A microstructure; grains with S orientation have Type B microstructure, grains with Cube orientation have Type C microstructure. The alignment of the extended dislocation boundaries depends strongly on the grain orientation. In most grains the boundaries have inclination angles of ±(30°---40°) to rolling direction (RD), and are approximately parallel to the traces of the most active {111} slip planes as identified by a Schmid factor analysis.

Key words:  aluminum alloy      cold rolling      electron backscattered diffraction (EBSD)      dislocation boundary structure     
Received:  26 November 2008     
ZTFLH: 

TG335.12

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.50231030 and  50571051)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I6/641

[1] Kuhlmann–Wilsdorf D, Hansen N. Scr Metall Mater,1991; 25: 1557
[2] Liu Q, Hansen N. Scr Metall Mater, 1995; 32: 1289
[3] Liu Q, Juul Jensen D, Hansen N. Acta Mater, 1998; 46:5819
[4] Liu Q, Hansen N. Phys Status Solidi, 1995; 149A: 187
[5] Hansen N. Metall Mater Trans, 2001; 32A: 2917
[6] Hughes D A, Liu Q, Chrzan D C, Hansen N. Acta Mater,1997; 45: 105
[7] Godfrey A, Hughes D A. Acta Mater, 2000; 48: 1897
[8] Huang X, Winther G. Philos Mag, 2007; 87: 5189
[9] Winther G, Huang X. Philos Mag, 2007; 87: 5215
[10] Huang X, Hansen N. Scr Mater, 1997; 37: 1
[11] Hansen N, Huang X. Acta Mater, 1998; 46: 1827
[12] Hansen N, Huang X, Winther G. Mater Sci Eng, 2008;A494: 61
[13] Yang P, Li C M, Liu D M, Huang M, Li M, Meng L. Mater Sci Technol, 2005; 21: 1444
[14] Wu G L, Liu W, Godfrey A, Liu Q. Acta Metall Sin, 2004; 40: 699
(吴桂林, 刘伟, Godfrey A, 刘 \ \ 庆. 金属学报, 2004; 40: 699)
[15] Mao W M, Jiang H, Yang P, Feng H, Yu Y. Mater Sci Technol, 2005; 21: 1383
[16] Li X L, Liu W, Godfrey A, Juul Jensen D, Liu Q. Acta Mater, 2007; 55: 3531
[17] Li Z J, Godfrey A, Liu Q. Acta Mater, 2004; 52: 149
[18] Yao Z Y, Liu Q, Godfrey A, Liu W. J Chin Electron Microsc Soc, 2008; 27: 452
(姚宗勇, 刘 庆, Godfrey A, 刘 伟. 中国电子显微学报, 2008; 27: 452)
[19] Hughes D A, Hansen N. Metall Trans, 1993; 24A: 2021
[20] Liu Q, Maurice C, Driver J, Hansen N. Metall Mater Trans, 1998; 29A: 2333
[21] Daaland O, Nes E. Acta Mater, 1996; 44: 1389
[22] Humphreys F J, Bate P S, Acta Mater, 2006; 54: 817
[23] Humphreys F J, Bate P S, Acta Mater, 2007; 55: 5630
[24] Winther G. Acta Mater, 2003; 51: 417
[25] Winther G, Huang X, Godfrey A, Hansen N. Acta Mater, 2004; 52: 4437

[1] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[2] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[3] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[4] YU Shaoxia, WANG Qi, DENG Xiangtao, WANG Zhaodong. Preparation and Size Effect of GH3600 Nickel-Based Superalloy Ultra-Thin Strips[J]. 金属学报, 2023, 59(10): 1365-1375.
[5] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[6] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[7] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[8] WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. 金属学报, 2022, 58(7): 921-931.
[9] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[10] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[11] REN Ping, CHEN Xingpin, WANG Cunyu, YU Feng, CAO Wenquan. Effects of Pre-Strain and Two-Step Aging on Microstructure and Mechanical Properties of Fe-30Mn-11Al-1.2C Austenitic Low-Density Steel[J]. 金属学报, 2022, 58(6): 771-780.
[12] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
[13] WANG Guanjie, LI Kaiqi, PENG Liyu, ZHANG Yiming, ZHOU Jian, SUN Zhimei. High-Throughput Automatic Integrated Material Calculations and Data Management Intelligent Platform and the Application in Novel Alloys[J]. 金属学报, 2022, 58(1): 75-88.
[14] ZHAO Wanchen, ZHENG Chen, XIAO Bin, LIU Xing, LIU Lu, YU Tongxin, LIU Yanjie, DONG Ziqiang, LIU Yi, ZHOU Ce, WU Hongsheng, LU Baokun. Composition Refinement of 6061 Aluminum Alloy Using Active Machine Learning Model Based on Bayesian Optimization Sampling[J]. 金属学报, 2021, 57(6): 797-810.
[15] SUN Jiaxiao, YANG Ke, WANG Qiuyu, JI Shanlin, BAO Yefeng, PAN Jie. Microstructure and Mechanical Properties of 5356 Aluminum Alloy Fabricated by TIG Arc Additive Manufacturing[J]. 金属学报, 2021, 57(5): 665-674.
No Suggested Reading articles found!