Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (3): 280-284    DOI:
论文 Current Issue | Archive | Adv Search |
MORPHOLOGY AND SUBSTRUCTURE OF JUJUBE--STONE--LIKE MARTENSITE IN ULTRAHIGH CARBON STEEL
ZHANG Zhanling1;LIU Yongning2;YU Guang2;ZHU Jiewu2;HE Tao2
1 School of Materials Science and Engineering; Henan University of Science and Technology; Luoyang 471003 2 State Key Laboratory for Mechanical Behavior of Materials; Xi'an Jiaotong University; Xi'an 710049
Cite this article: 

ZHANG Zhanling LIU Yongning YU Guang ZHU Jiewu HE Tao. MORPHOLOGY AND SUBSTRUCTURE OF JUJUBE--STONE--LIKE MARTENSITE IN ULTRAHIGH CARBON STEEL. Acta Metall Sin, 2009, 45(3): 280-284.

Download:  PDF(908KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In the martensitic transformation of an ultrahigh carbon steel (UHCS) containing 1.58%C, a kind of jujube-stone-like martensite has been observed in addition to lath and twinning martensites. The substructure of the jujube-stone-like martensite is high density dislocation with 1013/cm2 and no twin has been found. Theoretical analysis based on a disc-like martensite grain shows that the strain energy is not relative to the critical thickness of the disc (2t0*) but relative to the critical diameter of the disc (2r0*), and the critical nucleation energy ΔG* is inversely related to the square of the critical aspect ratio, t0*/r0*, of martensitic grains. When t0*/r0*<1, martensitic nucleus is disc shape, t0*/r0*>1, the nucleus is jujube--stone--like and t0*/r0*>>1, the nucleus is rod shape.

Key words:  ultrahigh carbon steel      martensite transformation      martensite morphology      dislocation      twinning      carbide     
Received:  22 August 2008     
ZTFLH: 

TG142

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.50571077 and 50774029) and ScienceFund for Distinguished Young Scholars of Henan Province (No.074100510011)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I3/280

[1] Porter D A, Easterling K E. Phase Transformations in Metals and Alloys, 2nd Ed., London, New York: Chapman & Hall, 1992: 383
[2] Marder A R, Krauss G. Trans Am Soc Met, 1967; 60: 651
[3] Magee C L, Davies R D. Acta Metell, 1971; 19: 345
[4] Speich G R, Leslie W C. Metall Trans, 1972; 3: 1043
[5] Xu Z Y. Acta Metall Sin, 1979; 15: 329
(徐祖耀. 金属学报, 1979; 15: 329)
[6] Krauss G. Mater Sci Eng, 1999; A40–57: 273
[7] Sunana H, Wadsworth J, Lin J. Sherby O D. Mater Sci Eng, 1979; 38: 35
[8] Zhu J W, Xu Y, Liu Y N. Mater Sci Eng, 2004; A385: 440
[9] Hayzelden C, Cantor B. Acta Metall, 1986; 34: 233
[10] Kajiwara S, Ohno S, Honma K. Philos Mag, 1991; 63A: 625
[11] Durlu T N. J Mater Sci Lett, 1997; 16: 320
[12] Guimaraes J R C. Scr Mater, 2007; 57: 237
[13] Guimaraes J R C. Mater Sci Eng, 2008; A475: 343
[14] Waitza T, Antretter T, Fischer F D, Simhad N K, Karnthalera H P. J Mech Phy Solids, 2007; 55: 419
[15] Tan Y X, Li G, Zhu R H, Wang J Y. Met Sci Technol, 1992; 3: 37
(谈育煦, 李刚, 朱蕊花, 王静宜. 金属科学与工艺, 1992;3:37)

[16] Christian J W. The Theory of Transformations in Metals and Alloys. Oxford: Pergamon Press, 1965: 294
[17] Sahua P, De M, Kajiwarab S. J Alloys Compds, 2002; 346: 158
[18] Speich G R. Metall Trans, 1972; 3: 1043
[19] Haasen P. Physical Metallurgy, 2nd Ed., Cambridge: Cambridge University Press, 1986: 255
[20] Eric M T, Chol K S, Donald R L, Sherby O D. Metall Mater Trans, 1996; 27A: 111

[1] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[2] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[3] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[4] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[5] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[6] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[7] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[8] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[9] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[10] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[11] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[12] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[13] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[14] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[15] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
No Suggested Reading articles found!