|
|
MORPHOLOGY AND SUBSTRUCTURE OF JUJUBE--STONE--LIKE MARTENSITE IN ULTRAHIGH CARBON STEEL |
ZHANG Zhanling1;LIU Yongning2;YU Guang2;ZHU Jiewu2;HE Tao2 |
1 School of Materials Science and Engineering; Henan University of Science and Technology; Luoyang 471003
2 State Key Laboratory for Mechanical Behavior of Materials; Xi'an Jiaotong University; Xi'an 710049 |
|
Cite this article:
ZHANG Zhanling LIU Yongning YU Guang ZHU Jiewu HE Tao. MORPHOLOGY AND SUBSTRUCTURE OF JUJUBE--STONE--LIKE MARTENSITE IN ULTRAHIGH CARBON STEEL. Acta Metall Sin, 2009, 45(3): 280-284.
|
Abstract In the martensitic transformation of an ultrahigh carbon steel (UHCS) containing 1.58%C, a kind of jujube-stone-like martensite has been observed in addition to lath and twinning martensites. The substructure of the jujube-stone-like martensite is high density dislocation with 1013/cm2 and no twin has been found. Theoretical analysis based on a disc-like martensite grain shows that the strain energy is not relative to the critical thickness of the disc (2t0*) but relative to the critical diameter of the disc (2r0*), and the critical nucleation energy ΔG* is inversely related to the square of the critical aspect ratio, t0*/r0*, of martensitic grains. When t0*/r0*<1, martensitic nucleus is disc shape, t0*/r0*>1, the nucleus is jujube--stone--like and t0*/r0*>>1, the nucleus is rod shape.
|
Received: 22 August 2008
|
|
Fund: Supported by National Natural Science Foundation of China (Nos.50571077 and 50774029) and ScienceFund for Distinguished Young Scholars of Henan Province (No.074100510011) |
[1] Porter D A, Easterling K E. Phase Transformations in Metals and Alloys, 2nd Ed., London, New York: Chapman & Hall, 1992: 383
[2] Marder A R, Krauss G. Trans Am Soc Met, 1967; 60: 651
[3] Magee C L, Davies R D. Acta Metell, 1971; 19: 345
[4] Speich G R, Leslie W C. Metall Trans, 1972; 3: 1043
[5] Xu Z Y. Acta Metall Sin, 1979; 15: 329
(徐祖耀. 金属学报, 1979; 15: 329)
[6] Krauss G. Mater Sci Eng, 1999; A40–57: 273
[7] Sunana H, Wadsworth J, Lin J. Sherby O D. Mater Sci Eng, 1979; 38: 35
[8] Zhu J W, Xu Y, Liu Y N. Mater Sci Eng, 2004; A385: 440
[9] Hayzelden C, Cantor B. Acta Metall, 1986; 34: 233
[10] Kajiwara S, Ohno S, Honma K. Philos Mag, 1991; 63A: 625
[11] Durlu T N. J Mater Sci Lett, 1997; 16: 320
[12] Guimaraes J R C. Scr Mater, 2007; 57: 237
[13] Guimaraes J R C. Mater Sci Eng, 2008; A475: 343
[14] Waitza T, Antretter T, Fischer F D, Simhad N K, Karnthalera H P. J Mech Phy Solids, 2007; 55: 419
[15] Tan Y X, Li G, Zhu R H, Wang J Y. Met Sci Technol, 1992; 3: 37
(谈育煦, 李刚, 朱蕊花, 王静宜. 金属科学与工艺, 1992;3:37)
[16] Christian J W. The Theory of Transformations in Metals and Alloys. Oxford: Pergamon Press, 1965: 294
[17] Sahua P, De M, Kajiwarab S. J Alloys Compds, 2002; 346: 158
[18] Speich G R. Metall Trans, 1972; 3: 1043
[19] Haasen P. Physical Metallurgy, 2nd Ed., Cambridge: Cambridge University Press, 1986: 255
[20] Eric M T, Chol K S, Donald R L, Sherby O D. Metall Mater Trans, 1996; 27A: 111 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|